Iron (II) Determination in Lipstick Samples using Spectrophotometric and Microfluidic Paper-based Analytical Device (µPADs) Platform via Complexation Reaction with Iron Chelator 1, 10-phenanthroline: A Comparative Study
Main Article Content
Abstract
This study was undertaken to introduce a fast, accurate, selective, simple and environment-friendly colorimetric method to determine iron (II) concentration in different lipstick brands imported or manufactured locally in Baghdad, Iraq. The samples were collected from 500-Iraqi dinars stores to establish routine tests using the spectrophotometric method and compared with a new microfluidic paper-based analytical device (µPAD) platform as an alternative to cost-effective conventional instrumentation such as Atomic Absorption Spectroscopy (AAS). This method depends on the reaction between iron (II) with iron(II) selective chelator 1, 10-phenanthroline(phen) in the presence of reducing agent hydroxylamine (HOA) and sodium acetate (NaOAc) buffer to yield a reddish/orange colour change proportional to the iron(II) concentration measured at λmax = 510 nm. Under optimum conditions, the calibration curve was linear in the range between (0.5-150) mg L-1 with a limit of detection of 0.09 mg L-1. Compared to a spectrophotometric detection method, µPAD measured colour intensity using captured images using Samsung mobile phone and image J program to give proof of concept that µPAD platform fulfils the purpose of accuracy and at the same time remaining cost-effective and simplistic to be used in both developing and developed countries gave same linear calibration curve with a limit of detection 0.12 mg L-1. ANOVA test was used to compare the proposed method results with conventional method results showing the method was accepted. The antimicrobial activity showed no significant effect from lipstick samples on tested microbes.
Received 2/7/2020
Accepted 8/11/2020
Published Online First 20/9/2021
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Zafarzadeh, A. et al. Assessment of cadmium and lead concentrations in different types of cosmetics products consumed in Iran. 8, 1200-1204 (2018).
Nasirudeen, M. & Amaechi, A. J. S. W. J. Spectrophotometric determination of heavy metals in cosmetics sourced from Kaduna Metropolis, Nigeria. 10, 1-5 (2015).
Massadeh, A. M., El-Khateeb, M. Y. & Ibrahim, S. M. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets. Public health 149, 130-137, doi:10.1016/j.puhe.2017.03.015 (2017).
Soares, A. R. & Nascentes, C. C. Development of a simple method for the determination of lead in lipstick using alkaline solubilization and graphite furnace atomic absorption spectrometry. Talanta 105, 272-277, doi:https://doi.org/10.1016/j.talanta.2012.09.021 (2013).
Sani, A., Gaya, M. B. & Abubakar, F. A. Determination of some heavy metals in selected cosmetic products sold in kano metropolis, Nigeria. Toxicology reports 3, 866-869, doi:10.1016/j.toxrep.2016.11.001 (2016).
Adepoju-Bello, A. A., Oguntibeju, O. O., Adebisi, R. A., Okpala, N. and Coker, H. A. B. Evaluation of the concentration of toxic metals in cosmetic products in Nigeria African Journal of Biotechnology 11, 16360-16364 (2012).
Zakaria, A. & Ho, Y. B. Heavy metals contamination in lipsticks and their associated health risks to lipstick consumers. Regulatory toxicology and pharmacology 73, 191-195 (2015).
Sani, A., Gaya, M. B. & Abubakar, F. A. Determination of some heavy metals in selected cosmetic products sold in kano metropolis, Nigeria. Toxicology reports 3, 866-869, doi:https://doi.org/10.1016/j.toxrep.2016.11.001 (2016).
Zainy, F. Heavy Metals in Lipstick Products Marketed in Saudi Arabia. Journal of Cosmetics, Dermatological Sciences and Applications 7 (2017).
ALqadami, A. A., Abdalla, M. A., ALOthman, Z. A. & Omer, K. Application of solid phase extraction on multiwalled carbon nanotubes of some heavy metal ions to analysis of skin whitening cosmetics using ICP-AES. International journal of environmental research and public health 10, 361-374 (2013).
Flora, S. J. S. & Pachauri, V. Chelation in metal intoxication. Int J Environ Res Public Health 7, 2745-2788, doi:10.3390/ijerph7072745 (2010).
Halla, N. et al. Cosmetics preservation: a review on present strategies. Molecules 23, 1571 (2018).
Omenka, S. S. & Adeyi, A. A. Heavy metal content of selected personal care products (PCPs) available in Ibadan, Nigeria and their toxic effects. Toxicology reports 3, 628-635, doi:https://doi.org/10.1016/j.toxrep.2016.07.006 (2016).
Abbaspour, N., Hurrell, R. & Kelishadi, R. Review on iron and its importance for human health. J Res Med Sci 19, 164-174 (2014).
Levi, S. & Tiranti, V. Neurodegeneration with Brain Iron Accumulation Disorders: Valuable Models Aimed at Understanding the Pathogenesis of Iron Deposition. Pharmaceuticals 12, 27 (2019).
Piperno, A., Pelucchi, S. & Mariani, R. Inherited iron overload disorders. Translational Gastroenterology and Hepatology 5 (2020).
Łodyga-Chruścińska, E., Sykuła, A. & Więdłocha, M. Hidden Metals in Several Brands of Lipstick and Face Powder Present on Polish Market. Cosmetics 5, 57 (2018).
NNOROM, I. C., IGWE, J.C. and OJI-NNOROM C.G. Trace metal contents of facial (make-up) cosmetics commonly used in Nigeria. African Journal of Biotechnology 4, 1133-1138 (2005).
Ullah, H. et al. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arabian Journal of Chemistry 10, 10-18, doi:10.1016/j.arabjc.2013.09.021 (2017).
Cha, N.-R. et al. Determination of Iron, Copper, Zinc, Lead, Nickel and Cadmium in Cosmetic Matrices by Flame Atomic Absorption Spectroscopy. Analytical Letters 43, 259-268, doi:10.1080/00032710903325781 (2010).
Unsal, Y. E., Soylak, M., Tuzen, M. & Hazer, B. Determination of Lead, Copper, and Iron in Cosmetics, Water, Soil, and Food Using Polyhydroxybutyrate-B-polydimethyl Siloxane Preconcentration and Flame Atomic Absorption Spectrometry. Analytical Letters 48, 1163-1179, doi:10.1080/00032719.2014.971365 (2015).
Oklo, A., Enenche, D. & Aondoakaa, M. Heavy Metals in Some Lipstick products marketed in Makurdi Metropolis, Benue State Nigeria. International Journal of Environment, Agriculture and Biotechnology 5, 342-346, doi:10.22161/ijeab.52.8 (2020).
Mrmošanin, J. et al. The Evaluation of ICP OES for the Determination of Potentially Toxic Elements in Lipsticks: Health Risk Assessment. 2019 66, 12, doi:10.17344/acsi.2018.4800 (2019).
Jwan A. Abdul-Sattar, A.-J. K. A., Sahar A. Kadhom, and Lubna F. Mohammed-Ali. Spectrophotometric Determination of Amoxicillin-Application to Capsules. Al- Mustansiriya J. Sci 20, 35-42 (2009).
Ahmed H.Ismail, Jwan A. Abdulsattar. A sensitive spectrophotometer method for the determination of 4-aminoantipyrine as a Schiff base complicated with Cr (III), Ni (II) &Cu (II) transition elements and its preparation. Journal of Research Diyala humanity, 46-56 (2008).
AbdulSattar, J. Exploiting the diazotization reaction of 4- minoacetophenone for Methyldopa determination. Baghdad Science Journal 11 (2014).
AbdulSattar, J. A. Spectrophotometric determination of Metformin in pharmaceutical preparation using Prussian blue reaction. Journal of College of Education, 1157-1170 (2009).
Mouayed Q. Al-Abachi, Jwan A. Abdulsattar.Kinetic spectrophotometric methods for the determination of Amoxicillin in pharmaceutical preparation. . Iraqi Journal of Science 53, 8-16 (2012).
Al-Saleh, I., Al-Enazi, S. & Shinwari, N. Assessment of lead in cosmetic products. Regulatory Toxicology and Pharmacology 54, 105-113, doi:https://doi.org/10.1016/j.yrtph.2009.02.005 (2009).
Lu, Y., Shi, W., Jiang, L., Qin, J. & Lin, B. Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis 30, 1497-1500 (2009).
Gergov, M., Nenonen, T., Ojanperä, I. & Ketola, R. A. Compensation of Matrix Effects in a Standard Addition Method for Metformin in Postmortem Blood Using Liquid Chromatography–Electrospray–Tandem Mass Spectrometry. Journal of Analytical Toxicology 39, 359-364, doi:10.1093/jat/bkv020 (2015).
J Parekh, S. C. Antibacterial and phytochemical studies on twelve species of Indian medicinal plants. African Journal of Biomedical Research 10, 175-181 (2007).
Zhu, J., Yang, X., Fan, F. & Li, Y. Factors affecting the determination of iron species in the presence of ferric iron. Applied Water Science 8, 228, doi:10.1007/s13201-018-0876-6 (2018).
Dawson, A. Paper Microfluidics for Clinical Diagnostics using Colourimetric Detection Methods PhD thesis, HULL Uinversity, (2014).
Skoog, D. A., West, D. M. & Holler, F. J. Analytical chemistry: an introduction. (1990).
Mujawar, L. H. et al. A Highly Structured 1,10-Phenanthroline Arrayed Hydrophobic Sulfone Membrane Platform for the Rapid Determination and Speciation of Fe(2+)/Fe(3+) Ions in Water. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 33, 511-517, doi:10.2116/analsci.33.511 (2017).
Adhikamsetty, R. K., Gollapalli, N. R. & Jonnalagadda, S. B. Complexation kinetics of Fe2+ with 1,10-phenanthroline forming ferroin in acidic solutions. International Journal of Chemical Kinetics 40, 515-523, doi:10.1002/kin.20336 (2008).
Stewart, S. E., Parker, M. D., Amézquita, A. & Pitt, T. L. Microbiological risk assessment for personal care products. International journal of cosmetic science 38, 634-645, doi:10.1111/ics.12338 (2016).
Siya, K. et al. Lipsticks: The Microbial Cellar: An Original Study. Journal of microscopy and ultrastructure 7, 194-197, doi:10.4103/jmau.jmau_14_19 (2019).
Otto, M. Staphylococcal biofilms. Current topics in microbiology and immunology 322, 207-228, doi:10.1007/978-3-540-75418-3_10 (2008).
Everitt, H. A., Little, P. S. & Smith, P. W. A randomised controlled trial of management strategies for acute infective conjunctivitis in general practice. BMJ (Clinical research ed.) 333, 321, doi:10.1136/bmj.38891.551088.7C (2006).