Investigating the Aerodynamic Surface Roughness Length over Baghdad City Utilizing Remote Sensing and GIS Techniques

Main Article Content

Al-Zahraa A. Mohsen
Monim H. Al-Jiboori
Yaseen K. Al-Timimi

Abstract

This study calculated the surface roughness length (Zo), zero-displacement length (Zd) and height of the roughness elements (ZH) using GIS applications. The practical benefit of this study is to classify the development of Baghdad, choose the appropriate places for installing wind turbines, improve urban planning, find rates of turbulence, pollution and others. The surface roughness length (Zo) of Baghdad city was estimated based on the data of the wind speed obtained from an automatic weather station installed at Al-Mustansiriyah University, the data of the satellite images digital elevation model (DEM), and the digital surface model (DSM), utilizing Remote Sensing Techniques. The study area was divided into 15 municipalities (Rasheed, Mansour, Shulaa, Karrada, Shaab, Adhamiyah, Sadre 2, Sadre 1, Rusafa, Alghadeer, Baghdad Aljadeedah, Karkh, Kadhumiya, Green zone, and Dora). The results indicated that the variations in Zo depend strongly on zero-displacement length (Zd) and the roughness element height (ZH) and wind speed. The research results demonstrated that Baghdad Aljadeedah has the largest (Zo) with 0.43 m and Rasheed has the lowest value of (Zo) with 0.19 m.; the average (Zo) of Baghdad city was 0.32 m.

Article Details

How to Cite
1.
Investigating the Aerodynamic Surface Roughness Length over Baghdad City Utilizing Remote Sensing and GIS Techniques. Baghdad Sci.J [Internet]. 2021 Jun. 20 [cited 2024 Apr. 20];18(2(Suppl.):1048. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5590
Section
article

How to Cite

1.
Investigating the Aerodynamic Surface Roughness Length over Baghdad City Utilizing Remote Sensing and GIS Techniques. Baghdad Sci.J [Internet]. 2021 Jun. 20 [cited 2024 Apr. 20];18(2(Suppl.):1048. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5590

References

Haraj SA, Al-Jiboori MH. Study of Aerodynamic Surface Roughness for Baghdad City Using Signal-Level Measurements. Baghdad Sci J. 2019;16(1):215–20. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0215

Chappell A, Heritage GL. Using illumination and shadow to model aerodynamic resistance and flow separation: An isotropic study. Atmos Environ. 2007;41(28):5817–30. https://doi.org/10.1016/j.atmosenv.2007.03.037

Bradford GR, San Francisco C. Investigations of surface roughness length modification in Black Rock City, NV. Thesis MSc, The faculty of San Francisco State University; 2015.

Christopher A, Makoto GV. The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation. Bound. -Layer Meteorol. 2015; 154:449–69 10. https://doi.org/1007/s10546-014-9985

Desbarats AJ, Logan CE, Hinton MJ, Sharpe DR. On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol. 2002; 255:25–38. https://doi.org/10.1016/S0022-1694(01)00504-2

Zhou Q. Digital elevation model and digital surface model Qiming. Int Encycl ofGeography. 2017. https://doi.org/10.1002/9781118786352.wbieg0768

Carvalho M, Le Saux B, Trouve-Peloux P, Champagnat F, Almansa A. Multitask Learning of Height and Semantics from Aerial Images. IEEE Geosci Remote S. 2020;17(8):1391-1395. https://doi.org/10.1109/LGRS.2019.2947783.

Ramponi R, Blocken B, de Coo LB, Janssen WD. CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build Environ. 2015. https://doi.org/10.1016/j.buildenv.2015.04.018

Grimmond CSB, Oke TR. Aerodynamic Properties of Urban Area Derived from Analysis of Surface Form. J Appl Meteorol. 1999; 38:1262–92. https://doi.org/10.1175/1520-0450(1999)038%3C1262:APOUAD%3E2.0.CO;2

Kent CW, Grimmond S, Gatey D, Hirano K. Urban morphology parameters from global digital elevation models: implications for aerodynamic roughness for wind­speed estimation. Remote Sens Environ. 2019; 221:316–39. https://doi.org/10.1016/j.rse.2018.09.024

Al-jiboori MH, Al-draji AG. Aerodynamic Surface Roughness Length of Baghdad City. ANJS. 2010;13(1):96–102. http://5.10.230.12/index.php/anjs/article/view/1147/1005

Dutra L V, Santos JR, Corina C, Mura JC, Neeff T. Digital Height Modeling (DHM) of Tropical Forests using multi-frequency InSAR methodology. IGARSS. 2006;2190–2. https://doi.org/10.1109/IGARSS.2006.566

Badas MG, Salvadori L, Garau M, Querzoli G, Ferrari S. Urban areas parameterisation for CFD simulation and cities air quality analysis. Int J Environ Pollut. 2019;66(1–3):5–18. https://doi.org/10.1504/IJEP.2019.104514.

Jhaldiyal A, Gupta K, Gupta PK. Review of Methods for Estimating Urban Surface Roughness. Vayu Mandal. 2016;42(2).

Kent CW, Grimmond S, Gatey D. Aerodynamic roughness parameters in cities: Inclusion of vegetation. J Wind Eng Ind Aerodyn. 2017;169(December 2016):168–76. https://doi.org/10.1016/j.jweia.2017.07.016.

Andreas EL, Claffey KJ, Jordan R, Fairall CW, Guest P, Persson PO, et al. Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech. 2006; 559:117–49. https://doi.org/10.1017/S0022112006000164

Roth M. Turbulent transfer relationships over an urban surface. 11: Integral statistics. Wind Eng Ind Aerodyn. 1993; 4:1105–20. https://doi.org/10.1002/qj.49711951311

Al-Jiboori MH. Determining of neutral and unstable wind profiles over baghdad city. Iraqi J Sci. 2010;51(2):343–50.

Hadi NM, Al-Jboori MH, Al-Ammar KH. Determine the Vertical Sections of the Winds by Varieties Stability, in Semi-Urban Atmosphere of Hilla. Emerg Trends Sci Res. 2014;(50):7–16.

Adeeb HQ, Al-Timimi YK. Gis techniques for mapping of wind speed over Iraq. Iraqi J Agric Sci. 2020;50(6):1–9. https://doi.org/10.36103/ijas.v50i6.852

Al-salihi AM. Characterization of aerosol type based on aerosol optical properties over Baghdad, Iraq. Arab J Geosci. 2018; 11:633:1–15. https://doi.org/10.1007/s12517-018-3944-1

Hassan Z, Al-Abassi H, Al-Jiboori MH. Heat waves and health impact on human in Baghdad. Sci. Rev. Eng. Env. Sci. 2020;29(2):212–22. https://doi.org/10.22630/PNIKS.2020.29.2.18

Hashim BM, Sultan MA. Using remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City. Iran J Earth Sci. 2010; 2:20–4.

Tawfeek YQ, Jasim FH, Al-jiboori MH. A Study of Canopy Urban Heat Island of Baghdad, Iraq. Asian J Atmos Environ. 2020;14(3). https://doi.org/10.5572/ajae.2020.14.3.280

Hassan ZM, Al-Jiboori MH, Al-Abassi HM. The Effect of the Extremes Heat Waves on Mortality Rates in Baghdad During the Period (2004-2018). Al-Mustansiriyah J Sci. 2020;31(2):15. http://doi.org/10.23851/mjs.v31i2.753

Kahl JDW, Chapman HL. Atmospheric stability characterization using the Pasquill method: A critical evaluation. Atmos Environ. 2018;187(May):196–209. https://doi.org/10.1016/j.atmosenv.2018.05.058

Similar Articles

You may also start an advanced similarity search for this article.