Investigating the Aerodynamic Surface Roughness Length over Baghdad City Utilizing Remote Sensing and GIS Techniques

Main Article Content

Al-Zahraa A. Mohsen
Monim H. Al-Jiboori
Yaseen K. Al-Timimi


This study calculated the surface roughness length (Zo), zero-displacement length (Zd) and height of the roughness elements (ZH) using GIS applications. The practical benefit of this study is to classify the development of Baghdad, choose the appropriate places for installing wind turbines, improve urban planning, find rates of turbulence, pollution and others. The surface roughness length (Zo) of Baghdad city was estimated based on the data of the wind speed obtained from an automatic weather station installed at Al-Mustansiriyah University, the data of the satellite images digital elevation model (DEM), and the digital surface model (DSM), utilizing Remote Sensing Techniques. The study area was divided into 15 municipalities (Rasheed, Mansour, Shulaa, Karrada, Shaab, Adhamiyah, Sadre 2, Sadre 1, Rusafa, Alghadeer, Baghdad Aljadeedah, Karkh, Kadhumiya, Green zone, and Dora). The results indicated that the variations in Zo depend strongly on zero-displacement length (Zd) and the roughness element height (ZH) and wind speed. The research results demonstrated that Baghdad Aljadeedah has the largest (Zo) with 0.43 m and Rasheed has the lowest value of (Zo) with 0.19 m.; the average (Zo) of Baghdad city was 0.32 m.


Download data is not yet available.

Article Details

How to Cite
Mohsen A-ZA, Al-Jiboori MH, Al-Timimi YK. Investigating the Aerodynamic Surface Roughness Length over Baghdad City Utilizing Remote Sensing and GIS Techniques. Baghdad Sci.J [Internet]. 2021Jun.20 [cited 2021Jul.28];18(2(Suppl.):1048. Available from:


Haraj SA, Al-Jiboori MH. Study of Aerodynamic Surface Roughness for Baghdad City Using Signal-Level Measurements. Baghdad Sci J. 2019;16(1):215–20.

Chappell A, Heritage GL. Using illumination and shadow to model aerodynamic resistance and flow separation: An isotropic study. Atmos Environ. 2007;41(28):5817–30.

Bradford GR, San Francisco C. Investigations of surface roughness length modification in Black Rock City, NV. Thesis MSc, The faculty of San Francisco State University; 2015.

Christopher A, Makoto GV. The Effects of Highly Detailed Urban Roughness Parameters on a Sea-Breeze Numerical Simulation. Bound. -Layer Meteorol. 2015; 154:449–69 10.

Desbarats AJ, Logan CE, Hinton MJ, Sharpe DR. On the kriging of water table elevations using collateral information from a digital elevation model. J Hydrol. 2002; 255:25–38.

Zhou Q. Digital elevation model and digital surface model Qiming. Int Encycl ofGeography. 2017.

Carvalho M, Le Saux B, Trouve-Peloux P, Champagnat F, Almansa A. Multitask Learning of Height and Semantics from Aerial Images. IEEE Geosci Remote S. 2020;17(8):1391-1395.

Ramponi R, Blocken B, de Coo LB, Janssen WD. CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Build Environ. 2015.

Grimmond CSB, Oke TR. Aerodynamic Properties of Urban Area Derived from Analysis of Surface Form. J Appl Meteorol. 1999; 38:1262–92.;2

Kent CW, Grimmond S, Gatey D, Hirano K. Urban morphology parameters from global digital elevation models: implications for aerodynamic roughness for wind­speed estimation. Remote Sens Environ. 2019; 221:316–39.

Al-jiboori MH, Al-draji AG. Aerodynamic Surface Roughness Length of Baghdad City. ANJS. 2010;13(1):96–102.

Dutra L V, Santos JR, Corina C, Mura JC, Neeff T. Digital Height Modeling (DHM) of Tropical Forests using multi-frequency InSAR methodology. IGARSS. 2006;2190–2.

Badas MG, Salvadori L, Garau M, Querzoli G, Ferrari S. Urban areas parameterisation for CFD simulation and cities air quality analysis. Int J Environ Pollut. 2019;66(1–3):5–18.

Jhaldiyal A, Gupta K, Gupta PK. Review of Methods for Estimating Urban Surface Roughness. Vayu Mandal. 2016;42(2).

Kent CW, Grimmond S, Gatey D. Aerodynamic roughness parameters in cities: Inclusion of vegetation. J Wind Eng Ind Aerodyn. 2017;169(December 2016):168–76.

Andreas EL, Claffey KJ, Jordan R, Fairall CW, Guest P, Persson PO, et al. Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech. 2006; 559:117–49.

Roth M. Turbulent transfer relationships over an urban surface. 11: Integral statistics. Wind Eng Ind Aerodyn. 1993; 4:1105–20.

Al-Jiboori MH. Determining of neutral and unstable wind profiles over baghdad city. Iraqi J Sci. 2010;51(2):343–50.

Hadi NM, Al-Jboori MH, Al-Ammar KH. Determine the Vertical Sections of the Winds by Varieties Stability, in Semi-Urban Atmosphere of Hilla. Emerg Trends Sci Res. 2014;(50):7–16.

Adeeb HQ, Al-Timimi YK. Gis techniques for mapping of wind speed over Iraq. Iraqi J Agric Sci. 2020;50(6):1–9.

Al-salihi AM. Characterization of aerosol type based on aerosol optical properties over Baghdad, Iraq. Arab J Geosci. 2018; 11:633:1–15.

Hassan Z, Al-Abassi H, Al-Jiboori MH. Heat waves and health impact on human in Baghdad. Sci. Rev. Eng. Env. Sci. 2020;29(2):212–22.

Hashim BM, Sultan MA. Using remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City. Iran J Earth Sci. 2010; 2:20–4.

Tawfeek YQ, Jasim FH, Al-jiboori MH. A Study of Canopy Urban Heat Island of Baghdad, Iraq. Asian J Atmos Environ. 2020;14(3).

Hassan ZM, Al-Jiboori MH, Al-Abassi HM. The Effect of the Extremes Heat Waves on Mortality Rates in Baghdad During the Period (2004-2018). Al-Mustansiriyah J Sci. 2020;31(2):15.

Kahl JDW, Chapman HL. Atmospheric stability characterization using the Pasquill method: A critical evaluation. Atmos Environ. 2018;187(May):196–209.