Projective MDS Codes Over GF(27)
Main Article Content
Abstract
MDS code is a linear code that achieves equality in the Singleton bound, and projective MDS (PG-MDS) is MDS code with independents property of any two columns of its generator matrix. In this paper, elementary methods for modifying a PG-MDS code of dimensions 2, 3, as extending and lengthening, in order to find new incomplete PG-MDS codes have been used over . Also, two complete PG-MDS codes over of length and 28 have been found.
Received 4/11/2020
Accepted 13/1/2021
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
1. MacWilliams FJ, Sloane NA. The Theory of error-correcting codes. 6th ed. Amsterdam: North-Holland Publishing Company; 1977. 762 p.
2. Cardell SD, Climent JJ, Requena V. A construction of MDS array codes. WIT Transactions on Information and Communication Technologies. 2013; 45(12): p. 47-58.
3. Grassl M. Bounds on the minimum distance of linear codes and quantum. [Online].; 2007 [cited 2020 6 19. Available from: http://www.codetables.de.
4. Emami M, Pedram L. Optimal linear codes over GF(7) and GF(11) with dimension 3. Iranian Journal of Mathematical Sciences and Informatics. 2015; 10(1): p. 11-22.
5. González-Sarabia M, Rentería C. Generalized hamming weights and some parameterized codes. Discrete Math. 2016; 339: p. 813-821.
6. Johnsen T, Verdure H. Generalized Hamming weights for almost affine codes. IEEE Trans. Inform. Theory. 2017; 63(4): p. 1941-1953.
7. Halbawi W, Liu Z, Hassibi B. Balanced Reed-Solomon codes for all parameters. In 2016 IEEE Information Theory Workshop (ITW); 2016; Cambridge. p. 409-413.
8. Tamo I, Barg A, Frolov A. Bounds on the parameters of locally recoverable codes. IEEE Transactions on Information Theory. 2016; 62(6): p. 3070-3083.
9. Yildiz H, Hassii B. Further Progress on the GM-MDS conjecture for Reed-Solomon codes. In 2018 IEEE International Symposium on Information Theory (ISIT); 2018; Vail, CO. p. 16-20.
10. Heidarzadeh A, Sprintson A. 2017 IEEE International Symposium on Information Theory (ISIT). 2017.
11. Helleseth T. Projective codes meeting the Griesmer bound. Discrete Mathematics. 1992; 106/107: p. 265-271.
12. Hirschfeld JWP. Projective geometries over finite fields. 2nd ed. New York: Ox- ford Mathematical Monographs, The Clarendon Press, Oxford University Press; 1998. 576 p.