MyBotS Prototype on Social Media Discord with NLP

Main Article Content

Imam Al Maksur
Muhammad Muhajir

Abstract

The continuous growth in technology and technological devices has led to the development of machines to help ease various human-related activities. For instance, irrespective of the importance of information on the Steam platform, buyers or players still get little information related to the application. This is not encouraging despite the importance of information in this current globalization era. Therefore, it is necessary to develop an attractive and interactive application that allows users to ask questions and get answers, such as a chatbot, which can be implemented on Discord social media. Artificial Intelligence is a technique that allows machines to think and be able to make their own decisions. This research showed that the discord chatbot prototype provides various services based on the results of classification testing using the SVM method with three kernels, namely Linear, Polynomial, and RBF. The test data and accuracy values prediction are the largest Liniear Kernel SVM with accuracy and error prediction values of 94% and 6%.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Al Maksur I, Muhajir M. MyBotS Prototype on Social Media Discord with NLP. Baghdad Sci.J [Internet]. 2021Mar.30 [cited 2021Apr.13];18(1(Suppl.):0753. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5954
Section
article

References

Raihan JP, Putri YR. Communication Pattern Discord Group PUBG.INDO.FUN Through Application Discord. e-Proceeding Manag. 2018;2(3):4161–9.

Lacher L, Biehl C. Using Discord to Understand and Moderate Collaboration and Teamwork. Proc 49th ACM Tech Symp Comput Sci Educ. 2018;1107–1107.

Wulanjani AN. Discord Application:Turning a Voice Chat Application for Gamers into a Virtual Listening Class. 2nd English Lang Lit Int Conf. 2018;2:115–9.

Martínez-Plumed F, Loe BS, Flach P, Eéigeartaigh S, Vold K, Hernández-Orallo J. The facets of artificial intelligence: A framework to track the evolution of AI. IJCAI Int Jt Conf Artif Intell. 2018;2018-July:5180–7.

Juhn Y, Liu H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. J Allergy Clin Immunol [Internet]. 2020;145(2):463–9. Available from: https://doi.org/10.1016/j.jaci.2019.12.897

Zahour O, Benlahmar EH, Eddaoui A, Ouchra H, Hourrane O. A system for educational and vocational guidance in Morocco: Chatbot e-orientation. Procedia Comput Sci [Internet]. 2020;175:554–9. Available from: https://doi.org/10.1016/j.procs.2020.07.079

Septiansyah R, Akbar SR, Maulana R. Perancangan Bot Pada Discord Untuk Pembacaan Sensor Di Raspberry Pi Dengan Sistem Learning Yang Dinamis. J Pengemb Teknol Inf dan Ilmu Komput Univ Brawijaya. 2018;2(10):4202–12.

Niell S, Jesús F, Díaz R, Mendoza Y, Notte G, Santos E, et al. Beehives biomonitor pesticides in agroecosystems: Simple chemical and biological indicators evaluation using Support Vector Machines (SVM). Ecol Indic [Internet]. 2018;91(May 2017):149–54. Available from: https://doi.org/10.1016/j.ecolind.2018.03.028

Zhang H. Analysis of artificial Intelligence Technology in Electric Automation Control. J Phys Conf Ser. 2019;1345(5).

Yang LB. Application of artificial intelligence in electrical automation control. Procedia Comput Sci [Internet]. 2020;166:292–5. Available from: https://doi.org/10.1016/j.procs.2020.02.097

Heller B, Procter M, Mah D. Freudbot: An investigation of chatbot technology in distance education. Proc World Conf Educ Multimedia, Hypermedia Telecommun [Internet]. 2005;(March 2016):3913–8. Available from: http://www.editlib.org/index.cfm?fuseaction=Reader.ViewFullText&paper_id=20691

Beaudry J, Consigli A, Clark C, Robinson KJ. Getting ready for adult healthcare: Designing a chatbot to coach adolescents with special health needs through the transitions of care. J Pediatr Nurs [Internet]. 2019;49:85–91. Available from: https://doi.org/10.1016/j.pedn.2019.09.004

Sutoyo R, Chowanda A, Kurniati A, Wongso R. Designing an emotionally realistic chatbot framework to enhance its believability with AIML and information states. Procedia Comput Sci [Internet]. 2019;157:621–8. Available from: https://doi.org/10.1016/j.procs.2019.08.226

Dhyani M, Kumar R. An intelligent Chatbot using deep learning with Bidirectional RNN and attention model. Mater Today Proc [Internet]. 2020;(xxxx). Available from: https://doi.org/10.1016/j.matpr.2020.05.450

Setiaji B, Wibowo FW. Chatbot Using a Knowledge in Database: Human-to-Machine Conversation Modeling. Proc - Int Conf Intell Syst Model Simulation, ISMS. 2016;0:72–7.

Jain A, Kulkarni G, Shah V. Natural Language Processing. Int J Comput Sci Eng. 2018;6(1):161–7.

Garousi V, Bauer S, Felderer M. NLP-assisted software testing: A systematic mapping of the literature. Inf Softw Technol. 2020;126(March).

Bruno Marietto M das G, Aguiar RV, Barbosa G de O, Botelho WT, Pimentel E, Franca R dos S, et al. Artificial Intelligence Markup Language: A Brief Tutorial. Int J Comput Sci Eng Surv. 2013;4(3):1–20.

Abdul-Kader SA, Woods JC. Survey on Chatbot Design Techniques in Speech Conversation Systems. Int J Adv Comput Sci Appl. 2015;6(7):72–80.

Miner G, Elder J, Hill T, Delen D. A Fast, Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications. Acad Press Waltham, MA. 2012;

Mooney RJ. Machine Learning Text Categorization. Mach Learn Text Categ. 2006;1–6.

Engelhart MD, Aiken LR. The text mining handbook: Advanced approaches in analyzing unstructured data. Educ Psychol Meas. 1975;35(1):199–199.

Cummins R, O’Riordan C. Evolved term-weighting schemes in information retrieval: An analysis of the solution space. Artif Intell Rev. 2006;26(1–2):35–47.

Soucy P, Mineau GW. Beyond TFIDF weighting for text categorization in the vector space model. IJCAI Int Jt Conf Artif Intell. 2005;1130–5.

Cummins R. The Evolution and Analysis of Term-Weighting Schemes in Information Retrieval. Analysis. 2008;201.

Kumari M, Jain A, Bhatia A. Synonyms Based Term Weighting Scheme: An Extension to TF.IDF. Procedia Comput Sci [Internet]. 2016;89:555–61. Available from: http://dx.doi.org/10.1016/j.procs.2016.06.093

Salton G, Buckley C. TERM-WEIGHTING APPROACHES IN AUTOMATIC TEXT RETRIEVAL GERARD. Inf Process Manag. 1988;24(5):513–23.

Munot N, Govilkar SS. Comparative Study of Text Summarization Methods. Int J Comput Appl. 2014;102(12):33–7.

Christian H, Agus MP, Suhartono D. Single Document Automatic Text Summarization using Term Frequency-Inverse Document Frequency (TF-IDF). ComTech Comput Math Eng Appl. 2016;7(4):285.

Susilowati E, Sabariah MK, Gozali AA. Implementation Support Vector Machine Method for Traffic Jam Classification on Twitter. e-Proceeding Eng. 2015;2(1):1478–84.

Demidova LA, Klyueva IA, Pylkin AN. Hybrid approach to improving the results of the SVM classification using the random forest algorithm. Procedia Comput Sci [Internet]. 2019;150:455–61. Available from: https://doi.org/10.1016/j.procs.2019.02.077

Srivastava DK, Bhambhu L. Data classification using support vector machine. J Theor Appl Inf Technol. 2010;12(1):1–7.