Syntheses, Structures and Biological Activity of Some Schiff Base Metal Complexes

Main Article Content

Hassan M. A. Al-Redha
Safaa H. Ali
Saad S. Mohammed


Four new binuclear Schiff base metal complexes [(MCl2)2L] {M = Fe 1, Co 2, Cu 3, Sn 4, L = N,N’-1,4-Phenylenebis (methanylylidene) bis (ethane-1,2-diamine)} have been synthesized using direct reaction between proligand (L) and the corresponding metal chloride (FeCl2, CoCl2, CuCl2 and SnCl2). The structures of the complexes have been conclusively determined by a set of spectroscopic techniques (FT-IR, 1H-NMR, and mass spectra). Finally, the biological properties of the complexes have been investigated with a comparative approach against different species of bacteria (E. coli G-, Pseudomonas G-, Bacillus G+, Staphylococcus G+, and Streptococcus G+).


Download data is not yet available.

Article Details

How to Cite
Al-Redha HMA, Ali SH, Mohammed SS. Syntheses, Structures and Biological Activity of Some Schiff Base Metal Complexes . Baghdad Sci.J [Internet]. [cited 2021Dec.4];19(3):0704. Available from:


Radha VP, Kirubavathy SJ, Chitra S. Synthesis, characterization and biological investigations of novel Schiff base ligands containing imidazoline moiety and their Co (II) and Cu (II) complexes, J. Mol. Struct. 2018; 1165, 246-258.

Xu X, Ma S, Wu J, Yang J, Wang B, Wang S, Zhu J. High-performance, command degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. J. Mater. Chem. A. 2019; 7(25): 15420-15431.

Khalid KL. Some metal ions complexes derived from schiff base ligand with anthranillic acid: preparation, spectroscopic and biological studies. Baghdad Sci. J. 2020. 17 (1): 0099.

Chohan ZH, Arif M, Sarfraz M. Metal based antibacterial and antifungal amino acid derived Schiff bases: their synthesis, characterization and in vitro biological activity, Appl. Organomet. Chem. 2007; 21(4): 294-302.

Rana BS, Jain SL, Singh B, Bhaumik A, Sain B, Sinha AK. Click on silica: systematic immobilization of Co (II) Schiff bases to the mesoporous silica via click reaction and their catalytic activity for aerobic oxidation of alcohols. Dalton Trans. 2010; 39(33): 7760-7767.

Hwang S, Ryu JY, Jung SH, Park HR, Lee J. Cobalt complexes containing salen-type pyridoxal ligand and DMSO for cycloaddition of carbon dioxide to propylene oxide. Polyhedron, (2020); 178, 114353.

Panneerselvam P, Rather BA, Reddy DRS, Kumar NR. Synthesis and anti-microbial screening of some Schiff bases of 3-amino-6, 8-dibromo-2-phenylquinazolin-4 (3H)-ones, Eur. J. Med. Chem. 2009; 44(5): 2328-2333.

Rai BK, Kumar A. Synthesis, characterization and biocidal activity of some Schiff base and its metal complexes of Co (II), Cu (II) and Ni (II), Orient. J. Chem. 2013; 29(3): 1187-1191.

Ali SH, Abed HM, Abdulhussein HS. Antibiotic activity of new species of Schiff base metal complexes. Periódico Tchê Química. 2020; 17 (35): 837-860.

Illán-Cabeza NA, Hueso-Urena F, Moreno-Carretero MN, Martínez-Martos JM, Ramírez-Expósito MJ. Synthesis, characterization and antiproliferative activity of metal complexes with the Schiff base derived from the condensation 1: 2 of 2, 6-diformyl-4-methylphenol and 5, 6-diamino-1, 3-dimethyluracil. J. Inorgan. Biochem. 2008; 102 (4): 647-655.

Kumar KS, Ganguly S, Veerasamy R, De Clercq E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4 (3) H-ones, Eur. J. Med. Chem. 2010; 45(11): 5474-5479.

Roy S, Dutta T, Drew MG, Chattopadhyay S. Phenoxazinone synthase mimicking activity of a dinuclear copper (II) complex with a half salen type Schiff base ligand. Polyhedron, 2020; 178, 114311.

Illán-Cabeza NA, García-García AR, Martínez-Martos JM, Ramírez-Expósito MJ, Moreno-Carretero M N. Antiproliferative effects of palladium (II) complexes of 5-nitrosopyrimidines and interactions with the proteolytic regulatory enzymes of the renin–angiotensin system in tumoral brain cells. J. Inorgan. Biochem. 2013; 126, 118-127.

Zhao X, Li C, Zeng S, Hu W. Discovery of highly potent agents against influenza A virus, Eur. J. Med. Chem. 2011; 46(1): 52-57.

Azam M, Al-Resayes SI, Trzesowska-Kruszynska A, Kruszynski R, Adil SF, Lokanath NK. Pyridine solvated dioxouranium complex with salen ligand: Synthesis, characterization and luminescence properties." J. Saudi Chem. Soc. 2019; 23(5): 636-641.

Mishra M, Tiwari K, Mourya P, Singh MM, Singh P. Synthesis, characterization and corrosion inhibition property of nickel (II) and copper (II) complexes with some acylhydrazine Schiff bases, Polyhedron. 2015; 89, 29-38.

Salehi M, Ghasemi F, Kubicki M, Asadi A, Behzad M, Ghasemi MH, Gholizadeh A. Synthesis, characterization, structural study and antibacterial activity of the Schiff bases derived from sulfanilamides and related copper (II) complexes, Inorgan. Chim. Acta. 2016; 453, 238-246.

Nagesh GY, Mruthyunjayaswamy BHM. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde, J. Mol. Struct. 2015; 1085, 198-206.

Muche S, Levacheva I, Samsonova O, Biernasiuk A, Malm A, Lonsdale R, Popiołek Ł, Bakowsky U, Hołyn´ ska M. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex. J. Mol. Struct. 2017; 1127, 231-236

Das M, Chatterjee S, Harms K, Mondal TK, Chattopadhyay S. Formation of bis (μ-tetrazolato) dinickel (II) complexes with N, N, O-donor Schiff bases via in situ 1, 3-dipolar cyclo-additions: isolation of a novel bi-cyclic trinuclear nickel (II)–sodium (I)–nickel (II) complex, Dalton Trans. 2014; 43(7): 2936-2947.

Khan S, Jana S, Drew MGB, Bauzá A, Frontera A, Chattopadhyay S. A novel method for copper (II) mediated region-selective bromination of aromatic rings under mild conditions, RSC advances. 2016; 6(66): 61214-61220.

Khan S, Masum AA, Islam MM, Drew MGB, Bauzá A, Frontera A, Chattopadhyay S. Observation of π-hole interactions in the solid state structures of three new copper (II) complexes with a tetradentate N4 donor Schiff base: Exploration of their cytotoxicity against MDA-MB 468 cells, Polyhedron. 2017; 123, 334-343.

Bhattacharyya A, Sen S, Harms K, Chattopadhyay S. Formation of three photoluminescent zinc (II) complexes with Zn2O2 cores: Examples of bi-dentate bonding modes of potentially tri-and tetra-dentate Schiff bases, Polyhedron. 2015; 88, 156-163.

Mahmoud WA, Hassan ZM. Synthesis and spectral analysis of some metal ions complexes with mixed ligands of Schiff base and 1, 10-phenanthroline. Baghdad Sci. J. 2017: 14 (1):0135.

Nazir U, Akhter Z, Janjua NK, Asghar MA, Kanwal S, Butt TM, Shah FU. Biferrocenyl Schiff bases as efficient corrosion inhibitors for an aluminium alloy in HCl solution: a combined experimental and theoretical study. RSC Advances, 2020; 10(13): 7585-7599.

Keypour H, Zebarjadian MH, Rezaeivala M, Chehreghani A, Amiri-Rudbari H, Bruno G. Synthesis, characterization, crystal structure and antibacterial studies of some new heptadentate manganese (II), cadmium (II) and zinc (II) macrocyclic Schiff base complexes with two 2-pyridylmethyl pendant arms, J. Iranian Chem. Soc. 2014; 11(1): 101-109.

Murugaiyan M, Mani SP, Sithique MA. Zinc (ii) centered biologically active novel N, N, O donor tridentate water-soluble hydrazide-based O-carboxymethyl chitosan Schiff base metal complexes: synthesis and characterisation. New J. Chem. 2019; 43(24), 9540-9554.

Gündüzalp AB, €Ozsen I, Alyar H, Alyar S, €Ozbek N. Active Schiff bases containing thiophene/furan ring and their copper (II) complexes: Synthesis, spectral, nonlinear optical and density functional studies, J. Mol. Struct. 2016; 1120, 259-266.

Zuleta EC, Goenaga GA, Zawodzinski TA, Elder T, Bozell JJ. Deactivation of Co-Schiff base catalysts in the oxidation of para-substituted lignin models for the production of benzoquinones. Catal. Sci. Technol. 2020; 10(2): 403-413.

Gündüzalp AB, €Ozbek N, Karacan N. Synthesis, characterization, and antibacterial activity of the ligands including thiophene/furan ring systems and their Cu (II), Zn (II) complexes, Med. Chem. Res. 2012; 21(11): 3435-3444.