Biodegradation of Perfluorooctanoic Acid by Pseudomonas Plecoglossicida Strain DD4

Authors

  • Sergey P. Chetverikov Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa https://orcid.org/0000-0002-7961-1503
  • Danil A. Sharipov Ufa Institute of Biology of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa. https://orcid.org/0000-0001-5567-2902

DOI:

https://doi.org/10.21123/bsj.2022.6825

Keywords:

Biodegradation, Defluorination, LCMS-IT-TOF, Perfluorooctanoic acid, Pseudomonas plecoglossicida

Abstract

Organofluorines, as a pollutant, belongs to a group of substances which are very difficult to neutralize. They are part of many products of everyday use and for this reason they pollute the environment in large quantities. Perfluorinated carboxylic acids are entered into the list of the “Stockholm Convention on Persistent Organic Pollutants” in order to minimize the load on the environment by significantly reducing their use, up to their complete rejection. The DD4 strain was isolated from the soil by the enrichment method and identified using 16S rRNA method as Pseudomonas plecoglossicida. It is able to metabolize perfluorooctanoic acid (PFOA) as the only carbon source in Raymond nutrient medium with a concentration of 1000 mg/l with the release of 132 mg/l fluorine ions. In tests conducted on the biological decomposition of perfluorooctanoic acid, it was possible to quantify its residues using tandem LCMS-IT-TOF. The presented results characterize the Pseudomonas plecoglossicida DD4 strain actively utilized PFOA as the sole carbon source, which characterizes it as a candidate for the creation of biological products aimed at the utilization of organofluorine pollutants.

References

Raheem SS, Al-Dossary MA, Al-Saad HT. Laboratory Study for biodegradation of oxymatrine insecticide by single and mixed cultures of fungi isolated from agriculture soils in Basrah Governorate, Iraq. Baghdad Sci J. 2019; 16(1): 10–17. doi:10.21123/bsj.16.1.0010.

Noor MJ, Alaa KM, Estabriq HK. Bioremediation of petroleum hydrocarbons contaminated soil using bio piles system. Baghdad Sci J. 2019; 16(1): 185–193. doi:10.21123/BSJ.16.1.(SUPPL.).0185

Report of the conference of the parties of the Stockholm Convention on Persistent Organic Pollutants on the work of its fourth meeting, 4-8 May (2009). UNEP/POPS/COP.4/38. Geneva: Stockholm Convention Secretariat. P. 66–69

Sedlak MD, Benskin JP, Wong A, Grace R, Greig DJ. Per- and polyfluoroalkyl substances (PFASs) in San Francisco Bay wildlife: temporal trends, exposure pathways, and notable presence of precursor compounds. Chemosphere. 2017; 185: 1217–1226. doi: 10.1016/j.chemosphere.2017.04.096. Epub 2017 Apr 21.

Choi GH, Lee DY, Jeong DK, Kuppusamy S, Lee YB, Park BJ et al. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the South Korean agricultural environment: a national survey. J Integr Agric. 2017; 16(8): 1841–1851. doi:10.1016/S2095-3119(16)61585-X

Sznajder-Katarzyńska K, Surma M, Cieślik I. A Review of Perfluoroalkyl Acids (PFAAs) in terms of sources, applications, human exposure, dietary intake, toxicity, legal regulation, and methods of determination. J Chem. 2019; 2019: 1–21. https://doi.org/10.1155/2019/2717528

Savoca D, Pace A. Bioaccumulation, biodistribution, toxicology and biomonitoring of organofluorine compounds in aquatic organisms. Int J Mol Sci. 2021; 22(12): 6276. https://doi.org/10.3390/ijms22126276

Dhore R, Murthy GS. Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresour Technol. 2021; 341: 125808. doi: 10.1016/j.biortech.2021.125808. Epub 2021 Aug 22. PMID: 34455249.

Stoiber T, Evans S, Naidenko OV. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): a cyclical problem. Chemosphere. 2020; 127659. doi: 10.1016/j.chemosphere.2020. 127659. Epub 2020 Jul 11.

Gagliano E, Sgroi M, Falciglia PP, Vagliasindi FGA, Roccaro P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020; 171: 115381. doi: 10.1016/j.watres.2019.115381. Epub 2019 Dec 10.

Wang F, Shih K, Lu X, Liu C. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge. Environ. Sci Technol. 2013; 47: 2621–7. doi: 10.1021/es305352p. Epub 2013 Feb 22.

Kucharzyk KH, Darlington R, Benotti M, Deeb R, Hawley E. Novel treatment technologies for PFAS compounds: a critical review. J Environ Manag. 2017; 204: 757–764. doi: 10.1016/j.jenvman.2017.08.016. Epub 2017 Aug 14.

Hou J, Li G, Liu M, Chen L, Yao Y, Fallgren PH et al. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. Chemosphere. 2022; 287: 132205. doi: 10.1016/j.chemosphere. 2021. 132205. Epub 2021 Sep 10. PMID: 34563764.

Zhang Z, Sarkar D, Biswas JK, Datta R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. Bioresour Technol. 2022; 344: 126223. doi: 10.1016/j.biortech.2021.126223. Epub 2021 Oct 28. PMID: 34756980.

Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol. 2022; 15(3): 773–792. doi: 10.1111/1751-7915.13928. Epub 2021 Sep 27.

Yi LB, Chai LY, Xie Y, Peng QJ, Peng QZ. Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet Mol Res. 2016; 15(2): 1–12. doi: 10.4238/gmr.15028043.

Tang K.H.D., Kristanti R.A. Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess Biosyst Eng. 2022; 45(7):1093-1109. https://doi.org/10.1007/s00449-022-02694-z

Huang S, Jaffé, PR. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environ Sci Technol. 2019; 53: 11410–11419. doi: 10.1021/acs.est.9b04047. Epub 2019 Sep 18.

Huang S, Sima M, Long Y, Messenger C, Jaffé PR. Anaerobic degradation of perfluorooctanoic acid (PFOA) in biosolids by Acidimicrobium sp. strain A6. J Hazard Mater. 2022; 424: 127699. doi: 10.1016/j.jhazmat.2021.127699. Epub 2021 Nov 6.

Harris JD, Coon CM, Doherty ME, McHugh EA, Warner MC, Walters CL et al . Engineering and characterization of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compounds. Synth Syst Biotechnol. 2022; 7(2): 671–676. doi: 10.1016/j.synbio.2022.02.005. eCollection 2022 Jun.

Yu Y, Zhang K , Li Z , Ren C , Chen J, Lin YH. Microbial cleavage of C‐F bonds in two C6 per‐ and polyfluorinated compounds via reductive defluorination. Environ Sci Technol. 2020; 54: 14393–14402. doi: 10.1021/acs.est.0c04483. Epub 2020 Oct 29.

Bailes G, Lind M, Ely A, Powell M, Moore-Kucera J, Miles C et al .Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture. J Vis Exp. 2013; 75: e50373. doi: 10.3791/50373.

Shamsutdinova LR, Rybina AV, Karnauhov JA, Golovachev NV, Hizbullin FF. Soil contamination of territory of JSC "Ufahimprom". Bashkir Ecol. Bull. 2010; 1(22); 31–35. [cited 15.07.2022] URL https://www.elibrary.ru/item.asp?id=28859717

Raymond RL. Microbial oxidation of n-paraffinic hydrocarbons. J. Ind. Microbiol. Biotechnol. 1999; 22(4-5): 206–215. https://doi.org/10.1038/sj.jim.2900633

Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST. 1994. Bergey’s manual of systematic bacteriology. 9th edition, William and Wilkins, Baltimore, 787 pp.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10: 421. doi: 10.1186/1471-2105-10-421.

Saitou N, Nei M. The Neighbor-Joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4: 406–25. doi: 10.1093/oxfordjournals.molbev.a040454.

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 2: 111–20. doi: 10.1007/BF01731581.

Nakayama SF, Yoshikane M, Onoda Y, Nishihama Y, Iwai-Shimada M, Takagi M et al. Worldwide trends in tracing poly-and perfluoroalkyl substances (PFAS) in the environment. Trends Anal Chem. 2019; 121: 115410. https://doi.org/10.1016/j.trac.2019.02.011

Nishimor E, Kita-Tsukamoto K, Wakabayashi H. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol. 2000; 50: 83–89. doi: 10.1099/00207713-50-1-83.

Chetverikov S, Sharipov D, Korshunova T, Loginov O. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D. Appl Biochem Microbiol. 2017; 53: 533−538. doi:10.1134/S0003683817050027

Kwon B, Lim HJ, Na SH, Choi BI, Shin DS, Chung SY. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere. 2017; 109: 221−5. doi: 10.1016/j.chemosphere.2014.01.072. Epub 2014 Feb 18.

Yi L, Chai LY, Xie Y, Peng QJ, Peng Q.Z. Isolation, identification, and degradation performance of a PFOA degrading strain. Genet Mol Res. 2016; 15(2). doi: 10.4238/gmr.15028043.

Ochoa-Herrera V, Banihani Q, León G, Khatri C, Field JA, Sierra-Alvarez R. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Res. 2009; 43(13): 3177-86. doi: 10.1016/j.watres.2009.04.032. Epub 2009 May 3.

Downloads

Published

2022-12-05

How to Cite

1.
Biodegradation of Perfluorooctanoic Acid by Pseudomonas Plecoglossicida Strain DD4. Baghdad Sci.J [Internet]. 2022 Dec. 5 [cited 2024 Apr. 19];19(6(Suppl.):1502. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6825

Similar Articles

You may also start an advanced similarity search for this article.