Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method

Main Article Content

hadeel G. Abd Ali
https://orcid.org/0000-0002-2925-8983
Mudhir A. Abdul Hussain

Abstract

 


          In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two.  The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.

Article Details

How to Cite
1.
Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method . Baghdad Sci.J [Internet]. 2023 Oct. 1 [cited 2025 Jan. 21];20(5):1731. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6932
Section
article

How to Cite

1.
Nonlinear Ritz Approximation for the Camassa-Holm Equation by Using the Modify Lyapunov-Schmidt method . Baghdad Sci.J [Internet]. 2023 Oct. 1 [cited 2025 Jan. 21];20(5):1731. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6932

References

Sapronov YI. Finite Dimensional Reduction of Smooth Extremely Problems. Russ Math Surv. 51 1996; 51(1) : 97

Krasnoselskii MA. Topological Methods in the Theory of Nonlinear Equations, M. Gostehizdat, 1956. https://doi.org/10.1002/zamm.19640441041

Saprοnοv YI, Cһemerzina EV. Direct parameterization of caustics of Fredholm functionals. J Math. 2007; 142(3): 2189-2197.

Saprοnοv YI, Darinskii BM. Discriminant sets and layerings of bifurcating solutions of fredholm equations J Math. 2005; 126(4): 1297-1311.

Abdul Hussain MA, Qaasim TH. On Bifurcation of Periodic Solutions of Nonlinear Fourth Order Ordinary Differential Equation Int J Nonlinear Anal Appl. 2018; 2018(1): 48-56.

Abdul Hussain MA. Lyapunov –Schmidt Reduction in the Study of Periodic Travelling Wave Solutions of Nonlinear Dispersive Long Wave Equation. TWMS. J App Eng Math. 2017; 7(2): 303-310.

Shawi ZA., Abdul Hussain MA. Bifurcation Solutions of Fourth Order Non-linear Differential Equation Using a Local Method of Lyapunov –Schmidt, Bas J Sci. 39(2) 2021, 221–233.

Abdul Hussain MM, Abdul Hussain MA. Bifurcation solutions of a fourth order Nonlinear Differential Equations system using "local method of Lyapunov –Schmidt". J Basrah Res. (Sci) 2020; 46(2): 163-174.

Abdul Hussain MA, Mizeal AA. Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation. BRNΟ. Tοmus. 2012; 48(1): 27-37.

Abdul Hussain MA. Nonlinear Ritz approximation for Fredholm functionals. Electron. J Differ Equ. 2015; 2015(294): 1–11.

Mohammed MJ. Lyapunov-Schmidt Reduction in the analysis of bifurcation solutions and caustic of nonlinear system of algebraic equation. Asian J Math.Comp Res. 2016; 14(4): 275-289.

https://www.ikprress.org/index.php/AJOMCOR/article/view/751

Rosen A.H., Abdul Hussain M.A., On bifurcation solutions of nonlinear fourth order differential equation, Asian J Math.Comp Res. 2017;21(3): 145-155. https://www.ikppress.org/index.php/AJOMCOR/article/view/1151

Kadhim HK, Abdul Hussain MA. The analysis of bifurcation solutions of the Camassa–Holm equation by angular singularities. Probl Anal Issues Anal. 2020; 9(27) (1): 66–82.

Schmidt E. Zur Theorie der linearen und nichtlinearen Integral gleichungen. III. Teil: Über die Auflösung der nichtlinearen Integral gleichung und die Verzweigung ihrer Lösungen. Math Ann. 1908; 65(1908): 370-399.

Ouda EH. An Approximate Solution of some Variational Problems Using Boubaker Polynomials. Baghdad Sci J. 2018; 15(1): 106-109.

Zainab S. Madhi, Mudhir A. Abdul Hussain, Bifurcation Diagram of W(u_j,τ)-function with (p,q)-parameters, Iraqi J Sci., 63(2), 2022, 667-674.

Li J, Qiao Z. Bifurcations and Exact Traveling Wave Solutions for a Generalized CAMASSA-HOLM Equation. Int J Bifurcat Chaos. 2013; 23(3): 17 pages.

Hameed HH, Al-Saedi HM. Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function. Baghdad Sci J. 2021; 18(2): 296-305.