Synthesis and Evaluation of Platinum Nanoparticles Using F. Carica Fruit Extract and Their Antimicrobial Activities
Main Article Content
Abstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and Gram-negative Acinetobacter species, respectively. Accordingly, the synthesized NPs demonstrated inhibition zones of 36 and 28 mm against fungal and bacterial species, respectively. The presented Pt NPs play an active role in both antifungal and antibacterial activities which indicates the presence of a well-regulated nano-materials system for biomedical application.
Received 06/04/2022,
Revised 01/01/2023,
Accepted 03/01/2023,
Published 20/06/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Salih, E. Y., Bashir, M. B. A., Rajpar, A. H., Badruddin, I. A., & Bahmanrokh, G. (2022). Rapid fabrication of NiO/porous Si film for ultra-violate photodetector: The effect of laser energy. Microelectronic Engineering, 258, 111758.
Razzaque S, Hussain S Z, Hussain I, Tan B. Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymer. 2016; 8: 156.
Yun S, Hagfeldt A, Ma T. Pt‐free counter electrode for dye‐sensitized solar cells with high efficiency. Adv Mater. 2014; 26: 6210-6237.
Ding K, Gulec A, Johnson A M, Schweitzer N M, Stucky G D, Marks L D, et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science. 2015 Oct 9; 350 (6257): 189 -192.
Salih, E. Y., Bashir, M. B. A., Rajpar, A. H., & Badruddin, I. A. (2022). Fabrication and characterization of porous Si/CuO film for visible light MSM photodetector: The effect of post-processing temperature. Ceramics International, 48(7), 9965-9972..
Salleh F, Usop R, Saugi N S, Salih E Y, Mohamad M, Ikeda H, et al. Influence of TiO2 layer's nanostructure on its thermoelectric power factor. Appl Surf Sci. 2019; 497: 143736 -1-5.
Bashir, M. B. A., Salih, E. Y., Rajpar, A. H., Bahmanrokh, G., & Sabri, M. F. M. (2022). The impact of laser energy on the photoresponsive characteristics of CdO/Si visible light photodetector. Journal of Micromechanics and Microengineering, 32(8), 085006.
Abbas N K, Al-Attraqchi A A , Taha J H. Antimicrobial Activities of Green Biosynthesized Iron Oxide Nanoparticles Using F. Carica Fruit Extract. Indian J Forensic Med. 2020; april 14 (2) : 2181-2187.
Castro L, Blázquez M L, González F, Muñoz J Á, Ballester A. Biosynthesis of silver and platinum nanoparticles using orange peel extract: characterisation and applications. IET nanobiotechnology. 2015; 9: 252-258.
Mishra A, Mishra S, Manav N, Saluja D, Chandra R, Kaushik N. Synthesis, characterization, antibacterial and cytotoxic study of platinum (IV) complexes. Bioorg Med Chem. 2006; 14: 6333-6340.
Manav N, Mishra A, Kaushik N. In vitro antitumour and antibacterial studies of some Pt (IV) dithiocarbamate complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2006; 65(1): 32-35.
Ruiz A L, Garcia C B, Gallón S N, Webster T J. Novel Silver-Platinum Nanoparticles for Anticancer and Antimicrobial Applications. Int J Nanomed. 2020; 15: 169–179.
Jabir N R, Tabrez S, Ashraf G M, Shakil S, Damanhouri G A, Kamal M A. Nanotechnology-based approaches in anticancer research. Int J Nanomed. 2012; 7: 4391-4408
Elhusseiny A F, Hassan H H. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: Structure–property relationship, Spectrochim Acta Part A Mol Biomol Spectrosc. 2013; 103: 232-245.
Yamada M, Foote M, Prow T W. Therapeutic gold, silver, and platinum nanoparticles, Wiley Interdisciplinary: Rev Nanomed Nanobiotechnol. 2015; 7 (3): 428-445.
Cho K H, Park J E, Osaka T, Park S G. The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochim Acta. 2005; 51 (5): 956-960.
Kwon Y E, Whang K J, Park Y J, Kim K H. Synthesis, characterization and antitumor activity of novel octahedral Pt (IV) complexes. Bioorg Med Chem. 2003; 11: 1669-1676.
Liu X, Zhang J, Yang T, Guo X, Wu S, Wang S. Synthesis of Pt nanoparticles functionalized WO3 nanorods and their gas sensing properties. Sens Actuators B Chem. 2011; 156: 918-923.
Mishra A, Kaushik N. Synthesis, characterization, cytotoxicity, antibacterial and antifungal evaluation of some new platinum (IV) and palladium (II) complexes of thiodiamines, Eur J Med Chem. 2007; Oct 42(10): 1239-1246.
Öğütçü H, Yetim N K, Özkan E H, Eren O, Kaya G, Sarı N, et al. Nanospheres caped Pt (II) and Pt (IV): synthesis and evaluation as antimicrobial and Antifungal Agent. Pol J Chem Technol. 2017; 19 (1): 74-80.
Sharma K D. Antifungal activity of biogenic platinum nanoparticles: an in vitro study. Int J Curr Microbiol App Sci. 2017; 6(4): 334-340.
Velmurugan P, Shim J, Kim K, Oh B T. Prunus× yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett. 2016; 174: 61-65.
Das S K, Dickinson C, Lafir F, Brougham D F, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012; 14: 1322-1334.
Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 2007; 128 (3): 648-653.
Kumar B, Smita K, Cumbal L, Debut A. Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. Bio Nano Science. 2016; 6: 15-21.
Perez C, Pauli M, Bazerque P. Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp. 1990; 15: 113-115.
Syed A, Ahmad A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2012; Sep 97 (1): 27-31.
Shah M. Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature. Sci Iran. 2012; 19 (3): 964-966.
Bashir, M. B. A., Salih, E. Y., Sabri, M. F. M., Rajpar, A. H., Badruddin, I. A., Hussein, M. Z., & Al-Jumaili, B. E. (2021). In-depth thermal, microstructural and photoluminescence analysis of mesoporous ZnO/ZnAl2O4-MMO: the effect of molar ratio. ECS Journal of Solid State Science and Technology, 10(10), 106006.
Salih, E. Y., Ramizy, A., Aldaghri, O., Mohd Sabri, M. F., Madkhali, N., Alinad, T., ... & Eisa, M. H. (2022). In-depth optical analysis of Zn (Al) O mixed metal oxide film-based Zn/Al-layered double hydroxide for TCO application. Crystals, 12(1), 79..
Balouch A, Ali Umar A, Mawarnis E R, Saad S K M, Mat Salleh M, Abd Rahman M Y, Kityk I, Oyama M. Synthesis of amorphous platinum nanofibers directly on an ITO substrate and its heterogeneous catalytic hydrogenation characterization. ACS Appl Mater Interfaces. 2015; 7 (14): 7776–7785.
Thirumurugan A, Aswitha P, Kiruthika C, Nagarajan S, Christy A N. Green synthesis of platinum nanoparticles using Azadirachta indica–An eco-friendly approach. Mater Lett. 2016; 170 (2016): 175-178.
Salih, E. Y., Ramizy, A., Aldaghri, O., Sabri, M. F. M., Madkhali, N., Alinad, T., ... & Eisa, M. H. (2022). Rapid Synthesis of Hexagonal-Shaped Zn (Al) O-MMO Nanorods for Dye-Sensitized Solar Cell Using Zn/Al-LDH as Precursor. Nanomaterials, 12(9), 1477..
Soomro R A, Sherazi S H, Memon N, Shah M, Kalwar N, Hallam K R, Shah A. Synthesis of air stable copper nanoparticles and their use in catalysis, Adv Mater Lett. 2014; 5 (4): 191-198.
Warris A, Verweij P. Clinical implications of environmental sources for Aspergillus. Med Mycol. 2005; 43 (1): S59-S65.
Klis F M, de Koster C G, Brul S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryotic cell.2014; 13 (1): 2-9.