Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences
Main Article Content
Abstract
In this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
Received 4/5/2022, Revised 19/1/2023, Accepted 22/1/2023, Published Online First 20/2/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Jena SR, Nayak D, Paul AK, Mishra SC. Mixed anti-Newtonian-Gaussian rule for real definite integrals. Adv Math Sci. J. 2020; 9: 1081-1090. https://doi.org/10.37418/amsj.9.11.115
Jena SR, Nayak D. Approximate instantaneous current in RLC circuit. Bull Electr Eng Inform. 2020; 9: 803-809. https://doi.org/10.11591/eei.v9i2.1641
Jena SR, Nayak D. A comparative study of numerical integration based on mixed quadrature rule and Haar wavelets. Bull Pure Appl Sci Sect E Math Stat. 2019; 38E(2): 532–539. https://dx.doi.org/10.5958/2320-3226.2019.00054.7
Jena SR, Singh A. A Mathematical Model for Approximate Solution of Line Integral. J Comp Math Sci. 2019; 10(5): 1163-1172. http://www.compmath-journal.org/
Mishra SC, Jena SR. Approximate evaluation of analytic functions through extrapolation. Int J Pure Appl Math. 2018; 118(3): 791-800, https://dx.doi.org/10.12732/ijpam.v118i3.24
Jena SR, Singh A. Approximation of real definite integration. Int J Adv Res Eng Technol. 2018; 9(4): 197-207. http://iaeme.com/Home/issue/IJARET?Volume=9&Issue=4
Jena SR, Nayak D, Acharya MM. Application of mixed quadrature rule on Electromagnetic Field problems. Comput Math Model. 2017; 28: 267-277. https://doi.org/10.1007/s10598-017-9363-4
Tripathy AK, Dash RB, Baral A. A mixed quadrature rule blending Lobatto and Gauss Legendre three point rule for approximate evaluation of real definite integrals. Int J Comput. Sci Math. 2015; 6(4): 366-377. https://dx.doi.org/10.1504/IJCSM.2015.071809
Surulere SA, Oladeji AO. Error bounds for numerical integration of functions of lower smoothness and Gauss Legendre quadrature rule. Aust J Math Anal Appl. 2021; 18(2): 1-21. https://ajmaa.org/searchroot/files/pdf/v18n2/v18i2p19
Kreyszig E. Advanced Engineering Mathematics, 10thEd, Wiley, 2016:1 1001. http://www.wiley.com/college/kreyszig .
Huybrechs D. On the computation of Gaussian quadrature rules for Chebyshev sets of linearly independent functions. SIAM J Numer Anal. 2022; 60(3): 1168-1192 https://doi.org/10.1137/21M1456935
Jena SR, Gebremedhin GS. Approximate solution of a fifth order ordinary differential equations with block method. Int J Comput Sci Math. 2020; 12(4): 413-426. https://doi.org/10.1504/IJCSM.2020.112652
Jena SR, Senapati A, Gebremedhin GS. Numerical study of solutions in BFRK scheme. Int J Mech Control. 2020; 21: 163-170, www.jomac.it .
Gebremedhin GS, Jena SR. Approximate Solution of Ordinary Differential Equations via Hybrid Block Approach. Int J Emerg Technol. 2019; 10(4): 210-211,www.researchtrend.net
Jena SR, Moohanty M, Numerical treatment for ODE (Fifth order). Int J Emerg Technol. 2019; 10(4): 191–196. www.researchtrend.net
Rasheed MA, Kadhim SN. Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank- Nicolson Method. Baghdad Sci J. 2022; 19(2): 321-328, https://doi.org/10.21123/bsj.2022.19.2.0321
Al-Botani ZM, Al-Rozbayani AM. Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid Differential Transform Method and Finite Differences Method. Baghdad Sci J. 2022; 19(1): 64-70. : http://dx.doi.org/10.21123/bsj.2022.19.1.0064
Mohanty M, Jena SR. Differential Transformation Method for approximate solution of Ordinary Differential Equation. Adv Model Anal B. 2018; 61: 135-138. https://doi.org/10.18280/ama_b.610305
Mohanty M, Jena SR, Mishra SK. Mathematical Modelling in Engineering with Integral Transforms via Modified Adomian Decomposition Method. Math Model Eng Probl. 2021; 8: 409-417, https://doi.org/10.18280/mmep.080310
Jana SR, SenapatiA, GebremedhinGS.Approximate solution of MRLW equation in B spline environment. Math Sci. 2020; 14: 345 357. https://doi.org/10.1007/s40096-020-00345-6.
Jena SR, Gebremedhin GS. Numerical treatment of Kuramoto -Sivashinsky equation on B-spline collocation. Arab J Basic Appl Sci. 2021; 28: 283-291, https://doi.org/10.1080/25765299.2021.1949
Jena SR, Gebremedhin GS. Computational technique for heat and advection–diffusion equations. Soft Comput. 2021; 25: 11139–11150. https://doi.org/10.1007/s00500-021-05859-2
Senapati A, Jena SR. A computational scheme for fifth order boundary value problems. Int J Inf Technol. 2022: 1-8. https://dx.doi.org/10.1007/s41870-022-00871-7.
Jena SR, Sahoo M. Mohanty PK, Misra SK,Mishra BB.Application and convergence analysis of mixed quadrature rule for approximate solution of product integral. Math Eng Sci Aero. 2022; 13(4):1119-1129 www.journalmesa.com ,
Jena SR, Mohanty M, Mishra SK. Ninth step block method for numerical solution of fourth order ordinary differential equation. Adv Model Anal. 2018; 55:45-56, https://doi.org/10.18280/ama_a.550202.
Gebremedhin GS, Jena SR. Approximate solution of a fourth order ordinary differential equation via tenth step block method. Int J Comput Sci Math. 2020; 11: 253-2,10.1504/IJCSM.2020.10028216
Beni MR. Legendre wavelet method combined with the Gauss quadrature rule for numerical solution offractional integro differential equations. Iran J Numer Anal Optim. 2022; 12(1): 229249, https://dx.doi.org/10.22067/IJNAO.2021.73189.1070
Patra P, Das D, Dash RB. A comparative study of Gauss-Laguerre quadrature and an open type mixed quadrature by evaluating some improper integrals. Turk J Math. 2018; 42(1): 293–306, https://dx.doi.org/10.3906/mat-1610-57
Jena SR, Acharya MM, Paul AK, Mishra BB, Rout PK, Singh A. Numerical treatment and comparative study for Fredholm integral equation of second kind. Math Eng Sci Aero. 2022; 13(2): 511–520. www.journalmesa.com
Mohanty SK, Dash RB. A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions. Numer Alge Cont Optim. 2021: 1-14. https://dx.doi.org/10.3934/naco.2021031.
Mohanty SK. A triple mixed quadrature based adaptive scheme for analytic functions. Nonl Func Anal. 2021; 26(5): 935-947. https://dx.doi.org/10.22771/nfaa.2021.26.05.05
Jena SR, Dash P. Numerical treatment of analytic functions via mixed quadrature rule. Res J Appl Sci Eng Technol. 2015; 10(4): 391–392. http://dx.doi.org/10.19026/rjaset.10.2503
Jena SR, Mishra SC. Mixed quadrature for analytic functions. Glob J Pure Appl Math. 2015; 11(1): 281–286, http://www.ripublication.com
Dash P,Jena SR. Mixed quadrature over sphere. Glob J Pure Appl Math. 2015; 11(1): 415–426, http://www.ripublication.com
Jena SR, Singh A. A reliable treatment of analytic functions. Int J Appl Eng Reser. 2015; 10(5): 11691–11696, http://www.ripublication.com
Jena SR, Dash P.An efficient quadrature rule for approximate solution of non linear integral equation of Hammerstein type. Int J Appl Eng Res. 2015; 10(3); 5831–5840, http://www.ripublication.com
Jena SR, Rout PK, Mohanty PK, Misra SK, Paul AK. Adaptive quadrature on line integral in engineering. Math Eng Sci Aero. 2022; 13(4): 1109-1118, www.journalmesa.com.
Jena SR, Gebremedhin GS, Octic B-spline Collocation Scheme for Numerical Investigation of Fifth Order Boundary Value Problems. Int J Appl Compu Math. 2022; 8 (5): 1-19. https://dx.doi.org/10.1007/s40819-022-01437-8