Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences

Main Article Content

Saumya Ranjan Jena
https://orcid.org/0000-0001-6247-6109
Damayanti Nayak
Mitali Madhumita Acharya
Satya Kumar Misra

Abstract

In this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.

Article Details

How to Cite
1.
Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences. Baghdad Sci.J [Internet]. 2023 Oct. 1 [cited 2025 Jan. 21];20(5):1789. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7376
Section
article
Author Biographies

Mitali Madhumita Acharya, School of Applied sciences, Department of Mathematics, KIIT Deemed to be University, Bhubaneswar, Odisha, India.

Assistant Professor

Department of Mathematics

KIIT Deemed to be University

Satya Kumar Misra, School of Applied sciences, Department of Mathematics, KIIT Deemed to be University, Bhubaneswar, Odisha, India.

Associate Professor

Dept.of Mathematics

KIIT Dememed to be University

How to Cite

1.
Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences. Baghdad Sci.J [Internet]. 2023 Oct. 1 [cited 2025 Jan. 21];20(5):1789. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7376

References

Jena SR, Nayak D, Paul AK, Mishra SC. Mixed anti-Newtonian-Gaussian rule for real definite integrals. Adv Math Sci. J. 2020; 9: 1081-1090. https://doi.org/10.37418/amsj.9.11.115

Jena SR, Nayak D. Approximate instantaneous current in RLC circuit. Bull Electr Eng Inform. 2020; 9: 803-809. https://doi.org/10.11591/eei.v9i2.1641

Jena SR, Nayak D. A comparative study of numerical integration based on mixed quadrature rule and Haar wavelets. Bull Pure Appl Sci Sect E Math Stat. 2019; 38E(2): 532–539. https://dx.doi.org/10.5958/2320-3226.2019.00054.7

Jena SR, Singh A. A Mathematical Model for Approximate Solution of Line Integral. J Comp Math Sci. 2019; 10(5): 1163-1172. http://www.compmath-journal.org/

Mishra SC, Jena SR. Approximate evaluation of analytic functions through extrapolation. Int J Pure Appl Math. 2018; 118(3): 791-800, https://dx.doi.org/10.12732/ijpam.v118i3.24

Jena SR, Singh A. Approximation of real definite integration. Int J Adv Res Eng Technol. 2018; 9(4): 197-207. http://iaeme.com/Home/issue/IJARET?Volume=9&Issue=4

Jena SR, Nayak D, Acharya MM. Application of mixed quadrature rule on Electromagnetic Field problems. Comput Math Model. 2017; 28: 267-277. https://doi.org/10.1007/s10598-017-9363-4

Tripathy AK, Dash RB, Baral A. A mixed quadrature rule blending Lobatto and Gauss Legendre three point rule for approximate evaluation of real definite integrals. Int J Comput. Sci Math. 2015; 6(4): 366-377. https://dx.doi.org/10.1504/IJCSM.2015.071809

Surulere SA, Oladeji AO. Error bounds for numerical integration of functions of lower smoothness and Gauss Legendre quadrature rule. Aust J Math Anal Appl. 2021; 18(2): 1-21. https://ajmaa.org/searchroot/files/pdf/v18n2/v18i2p19

Kreyszig E. Advanced Engineering Mathematics, 10thEd, Wiley, 2016:1 1001. http://www.wiley.com/college/kreyszig .

Huybrechs D. On the computation of Gaussian quadrature rules for Chebyshev sets of linearly independent functions. SIAM J Numer Anal. 2022; 60(3): 1168-1192 https://doi.org/10.1137/21M1456935

Jena SR, Gebremedhin GS. Approximate solution of a fifth order ordinary differential equations with block method. Int J Comput Sci Math. 2020; 12(4): 413-426. https://doi.org/10.1504/IJCSM.2020.112652

Jena SR, Senapati A, Gebremedhin GS. Numerical study of solutions in BFRK scheme. Int J Mech Control. 2020; 21: 163-170, www.jomac.it .

Gebremedhin GS, Jena SR. Approximate Solution of Ordinary Differential Equations via Hybrid Block Approach. Int J Emerg Technol. 2019; 10(4): 210-211,www.researchtrend.net

Jena SR, Moohanty M, Numerical treatment for ODE (Fifth order). Int J Emerg Technol. 2019; 10(4): 191–196. www.researchtrend.net

Rasheed MA, Kadhim SN. Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank- Nicolson Method. Baghdad Sci J. 2022; 19(2): 321-328, https://doi.org/10.21123/bsj.2022.19.2.0321

Al-Botani ZM, Al-Rozbayani AM. Solving Whitham-Broer-Kaup-Like Equations Numerically by using Hybrid Differential Transform Method and Finite Differences Method. Baghdad Sci J. 2022; 19(1): 64-70. : http://dx.doi.org/10.21123/bsj.2022.19.1.0064

Mohanty M, Jena SR. Differential Transformation Method for approximate solution of Ordinary Differential Equation. Adv Model Anal B. 2018; 61: 135-138. https://doi.org/10.18280/ama_b.610305

Mohanty M, Jena SR, Mishra SK. Mathematical Modelling in Engineering with Integral Transforms via Modified Adomian Decomposition Method. Math Model Eng Probl. 2021; 8: 409-417, https://doi.org/10.18280/mmep.080310

Jana SR, SenapatiA, GebremedhinGS.Approximate solution of MRLW equation in B spline environment. Math Sci. 2020; 14: 345 357. https://doi.org/10.1007/s40096-020-00345-6.

Jena SR, Gebremedhin GS. Numerical treatment of Kuramoto -Sivashinsky equation on B-spline collocation. Arab J Basic Appl Sci. 2021; 28: 283-291, https://doi.org/10.1080/25765299.2021.1949

Jena SR, Gebremedhin GS. Computational technique for heat and advection–diffusion equations. Soft Comput. 2021; 25: 11139–11150. https://doi.org/10.1007/s00500-021-05859-2

Senapati A, Jena SR. A computational scheme for fifth order boundary value problems. Int J Inf Technol. 2022: 1-8. https://dx.doi.org/10.1007/s41870-022-00871-7.

Jena SR, Sahoo M. Mohanty PK, Misra SK,Mishra BB.Application and convergence analysis of mixed quadrature rule for approximate solution of product integral. Math Eng Sci Aero. 2022; 13(4):1119-1129 www.journalmesa.com ,

Jena SR, Mohanty M, Mishra SK. Ninth step block method for numerical solution of fourth order ordinary differential equation. Adv Model Anal. 2018; 55:45-56, https://doi.org/10.18280/ama_a.550202.

Gebremedhin GS, Jena SR. Approximate solution of a fourth order ordinary differential equation via tenth step block method. Int J Comput Sci Math. 2020; 11: 253-2,10.1504/IJCSM.2020.10028216

Beni MR. Legendre wavelet method combined with the Gauss quadrature rule for numerical solution offractional integro differential equations. Iran J Numer Anal Optim. 2022; 12(1): 229249, https://dx.doi.org/10.22067/IJNAO.2021.73189.1070

Patra P, Das D, Dash RB. A comparative study of Gauss-Laguerre quadrature and an open type mixed quadrature by evaluating some improper integrals. Turk J Math. 2018; 42(1): 293–306, https://dx.doi.org/10.3906/mat-1610-57

Jena SR, Acharya MM, Paul AK, Mishra BB, Rout PK, Singh A. Numerical treatment and comparative study for Fredholm integral equation of second kind. Math Eng Sci Aero. 2022; 13(2): 511–520. www.journalmesa.com

Mohanty SK, Dash RB. A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions. Numer Alge Cont Optim. 2021: 1-14. https://dx.doi.org/10.3934/naco.2021031.

Mohanty SK. A triple mixed quadrature based adaptive scheme for analytic functions. Nonl Func Anal. 2021; 26(5): 935-947. https://dx.doi.org/10.22771/nfaa.2021.26.05.05

Jena SR, Dash P. Numerical treatment of analytic functions via mixed quadrature rule. Res J Appl Sci Eng Technol. 2015; 10(4): 391–392. http://dx.doi.org/10.19026/rjaset.10.2503

Jena SR, Mishra SC. Mixed quadrature for analytic functions. Glob J Pure Appl Math. 2015; 11(1): 281–286, http://www.ripublication.com

Dash P,Jena SR. Mixed quadrature over sphere. Glob J Pure Appl Math. 2015; 11(1): 415–426, http://www.ripublication.com

Jena SR, Singh A. A reliable treatment of analytic functions. Int J Appl Eng Reser. 2015; 10(5): 11691–11696, http://www.ripublication.com

Jena SR, Dash P.An efficient quadrature rule for approximate solution of non linear integral equation of Hammerstein type. Int J Appl Eng Res. 2015; 10(3); 5831–5840, http://www.ripublication.com

Jena SR, Rout PK, Mohanty PK, Misra SK, Paul AK. Adaptive quadrature on line integral in engineering. Math Eng Sci Aero. 2022; 13(4): 1109-1118, www.journalmesa.com.

Jena SR, Gebremedhin GS, Octic B-spline Collocation Scheme for Numerical Investigation of Fifth Order Boundary Value Problems. Int J Appl Compu Math. 2022; 8 (5): 1-19. https://dx.doi.org/10.1007/s40819-022-01437-8