The Ecological Risk Assessment of Mercury Contamination in a Mangrove Ecosystem of the Segara Anakan Cilacap, Indonesia

Authors

  • Endang Hilmi Program of Aquatic Resources Management and Magister SDA program, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia. https://orcid.org/0000-0002-2390-5596
  • Teuku Junaidi Aquatic Resources Management Program, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia. https://orcid.org/0000-0002-6926-6056
  • Arif Mahdiana Aquatic Resources Management Program, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia. https://orcid.org/0000-0002-4953-9416
  • Rose Dewi Marine Science Program, Faculty of Fisheries and Marine Sciences, Universitas Jenderal Soedirman. Jl. Dr Soeparno, Purwokerto Utara, Banyumas 53122, Central Java, Indonesia. https://orcid.org/0000-0002-9138-741X

DOI:

https://doi.org/10.21123/bsj.2023.7455

Keywords:

Bioaccumulation factor, C and mangrove zoning, Ecological risk assessment, Mercury contamination, Translocation factor

Abstract

Ecological risk assessment of mercury contaminant has a means to analyze the ecological risk aspect of ecosystem using the potential impact of mercury pollution in soil, water and organism. The ecological risk assessment in a coastal area can be shown by mangrove zonation, clustering and interpolation of mercury accumulation. This research aims to analyze ecological risk assessment of potential mercury (including bioaccumulation and translocation) using indicators of species distribution, clustering, zonation and interpolation of mercury accumulation. The results showed that the Segara Anakan had a high risk of mercury pollution, using indicators like as the potential of mercury contaminant in water body was 0137±0.0137 ppm, substrate and sediment were 0.0134±0.0212 ppm. To reduce the impact of mercury pollution could be conducted by mangrove planting, following the ability of mercury accumulation in stem and bark between 0.011 and 0.064 ppm, in mangrove roots between 0.0260 and 0.0690 ppm and in mangrove leaves between 0.0020 and 0.0120 ppm,. The second indicator of mangrove ability to reduce the impact of mercury contaminant used the indicator of bioaccumulation factors, which had a range between 0.0210 and 0.4751, and the translocation factors were between 0.0459 and 1.0547. The results also showed that: Avicennia marina, Sonneratia alba, Rhizophora apiculate, Rhizophora mucronata and Nypa frutican had a good ability to accumulate and reduce the impact of mercury contamination.

References

Aljahdali MO, Alhassan AB. Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi J Biol Sci. 2020; 27(4): 1174–1184.

Al-Akeel KA, Al-Fredan MA, Desoky ESM. Impact of wastewater discharge on the plant diversity, community structure and heavy metal pollution of range plants in eastern Saudi Arabia. Saudi J Biol Sci. 2021; 28(12): 7367–7372.

Hilmi E, Siregar AS, Syakti AD. Lead (Pb) distribution on soil, water and mangrove vegetation matrices in Eastern Part of Segara Anakan Lagoon, Cilacap. Omni-Akuatika. 2017; 13(2): 25–38.

Syakti AD, Ahmed MM, Hidayati N V, Hilmi E, Sulystyo I, Piram A, et al. Screening of Emerging Pollutants in the Mangrove of Segara Anakan Nature Reserve, Indonesia. IERI Procedia. 2013; 5: 216–222.

Hilmi E, Pareng R, Vikaliana R, Kusmana C, Iskandar I, Sari LK, et al. The carbon conservation of mangrove ecosystem applied REDD program. Reg Stud Mar Sci. 2017; 16: 152–161.

Wolswijk G, Satyanarayana B, Dung LQ, Siau YF, Ali AN Bin, Saliu IS, et al. Distribution of mercury in sediments, plant and animal tissues in Matang Mangrove Forest Reserve, Malaysia. J Hazard Mater. 2020; 387(June): 121665 (10p)

Hilmi E. Mangrove landscaping using the modulus of elasticity and rupture properties to reduce coastal disaster risk. Ocean Coast Manag. 2018; 165(July): 71–79.

Hilmi E, Sari LK, Cahyo TN, Muslih M, Mahdiana A, Samudra SR. The affinity of mangrove species using association and cluster index in north coast of jakarta and segara anakan of cilacap, indonesia. Biodiversitas . 2021; 22(7): 2907–2918. https://doi.org/10.13057/biodiv/d220743

Hilmi E, Amron A, Sari LK, Cahyo TN, Siregar AS. The Mangrove Landscape and Zonation following Soil Properties and Water Inundation Distribution in Segara Anakan Cilacap. J Man Hut Trop. 2021; 27(3): 152–164.

Hilmi E, Sari LK, Siregar AS, Sulistyo I, Mahdiana A, Junaidi T, et al. Tannins in mangrove plants in segara anakan lagoon, central java, indonesia. Biodiversitas. 2021; 22(8): 3508–3516.

Prastyo Y, Batu DT. L, Sulistiono S. Heavy Metal Contain Cu and Cd on the Mullet in the estuary of Donan River, Cilacap, Central Java. Jurnal Pengolahan Hasil Perikanan Indonesia. 2017; 20(1): 18-28.

Cao Z, Wang L, Yang L, Yu J, Lv J, Meng M, et al. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. Mar Pollut Bull. 2020; 158: 111427 (11p).

Kibria G, Hossain MM, Mallick D, Lau TC, Wu R. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Mar Pollut Bull. 2016; 105(1): 393–402.

Xin K, Huang X, Hu J, Li C, Yang X, Arndt SK. Land use Change Impacts on Heavy Metal Sedimentation in Mangrove Land use Change ILand use Change Impacts on HeavyMetal Sedimentation in Mangrove Wetlands—A Case Study in Dongzhai Harbor of Hainan, China. Wetlands. 2014; 34: 1–8.

Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci. Total Environ. 2019; 680: 140–150.

Li R, Chai M, Guo M, Qiu GY. Sediment accumulation and mercury (Hg) flux in Avicennia marina forest of Deep Bay, China. Estuar. Coast Shelf Sci. 2016; 177: 41–46.

Shi C, Yu L, Chai M, Niu Z, Li R. The distribution and risk of mercury in Shenzhen mangroves, representative urban mangroves affected by human activities in China. Mar Pollut Bull. 2020; 151: 110866 (11p)

Jeong H, Choi JY, Choi DH, Noh JH, Ra K. Heavy metal pollution assessment in coastal sediments and bioaccumulation on seagrass (Enhalus acoroides) of Palau. Mar Pollut Bull. 2021; 163: 1–7.

Analuddin K, Sharma S, Jamili, Septiana A, Sahidin I, Rianse U, et al. Heavy metal bioaccumulation in mangrove ecosystem at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. Mar Pollut Bull. 2017; 125 (1–2): 472–480.

de Almeida Duarte LF, de Souza CA, Pereira CDS, Pinheiro MAA. Metal toxicity assessment by sentinel species of mangroves: In situ case study integrating chemical and biomarkers analyses. Ecotoxicol. Environ Saf. 2017; 145: 367–376.

Mapenzi LL, Shimba MJ, Moto EA, Maghembe RS, Mmochi AJ. Heavy metals bio-accumulation in tilapia and catfish species in Lake Rukwa ecosystem Tanzania. J Geochem Explor. 2020; 208: 106413 (12p)

Costa-Böddeker S, Thuyên LX, Hoelzmann P, de Stigter HC, van Gaever P, Huy HĐ, et al. Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of natural and anthropogenic stressors over a thirty-year history. Sci Total Environ. 2020; 716; 137035 (15p)

Melville F, Andersen LE, Jolley DF. The Gladstone (Australia) oil spill - Impacts on intertidal areas: Baseline and six months post-spill. Mar Pollut Bull. 2009; 58(2): 263–271.

Marambio AY, Saavedra JV, Enciso LÑ, Marras AL, Serrano AE, Peláez RM, et al. Data on metal accumulation in the tails of the lizard Microlophus atacamensis in a coastal zone of the Atacama Desert, northern Chile: A non-destructive biomonitoring tool for heavy metal pollution. Data in Brief . 2020; 32: 106032 (12p).

Nadgórska–Socha A, Kandziora-Ciupa M, Trzęsicki M, Barczyk G. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere. 2017; 183: 471–482.

Alzahrani DA, Selim E-MM, El-Sherbiny MM. Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia. Oceanologia. 2018; 60(4): 513–526.

Oo CW, Kassim MJ, Pizzi A. Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (II) and lead (II). Ind Crops Prod. 2009; 30(1): 152–161.

Ma W, Li X, Wang Q, Ren Z, Crabbe MJC, Wang L. Tandem oligomeric expression of metallothionein enhance heavy metal tolerance and bioaccumulation in Escherichia coli. Ecotoxicol. Environ Saf. 2019; 181: 301–307.

Zhang Z, Fang Z, Li J, Sui T, Lin L, Xu X. Copper, zinc, manganese, cadmium and chromium in crabs from the mangrove wetlands in Qi’ao Island, South China: Levels, bioaccumulation and dietary exposure. Watershed Ecol. Environ 2019; 1: 26–32.

Li R, Wu S, Chai M, Xie S. Denitrifier communities differ in mangrove wetlands across China. Mar Pollut Bull. 2020; 155: 111160 (11p)

Nour HE, El-Sorogy AS, Abd El-Wahab M, Nouh ES, Mohamaden M, Al-Kahtany K. Contamination and ecological risk assessment of heavy metals pollution from the Shalateen coastal sediments, Red Sea, Egypt. Mar Pollut Bull. 2019; 144: 167–172.

Xiao R, Bai J, Lu Q, Zhao Q, Gao Z, Wen X, et al. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China. Sci Total Environ. 2015; 517: 66–75.

Chai M, Li R, Qiu Z, Niu Z, Shen X. Mercury distribution and transfer in sediment-mangrove system in urban mangroves of fast-developing coastal region, Southern China.Estuar. Coast Shelf Sci. 2020; 240: 106770 (11p).

Hilmi E, Siregar AS, Febryanni L, Novaliani R, Amir SA, Syakti AD. Struktur Komunitas, Zonasi Dan Keanekaragaman Hayati Vegetasi Mangrove Di Segara Anakan Cilacap. Omni-Akuatika . 2015; 11(2): 20–32.

Hilmi E, Amron A, Sari LK, Cahyo TN, Siregar AS. The Mangrove Landscape and Zonation following Soil Properties and Water Inundation Distribution in Segara Anakan Cilacap. J Man Hut Trop. 2021; 27(3): 152–164.

Hilmi E, Sari LK, Cahyo TN, Mahdiana A, Soedibya PHT, Sudiana E. Survival and growth rates of mangroves planted in vertical and horizontal aquaponic systems in North Jakarta, Indonesia. Biodiversitas. 2022; 23(2): 686–693.

Monteiro JM, de Souza JSN, Lins Neto EMF, Scopel K, Trindade EF. Does total tannin content explain the use value of spontaneous medicinal plants from the Brazilian semi-arid region? Rev Bras Farmacogn. 2014; 24(2): 116–123.

Xiong Y, Liao B, Proffitt E, Guan W, Sun Y, Wang F, et al. Soil carbon storage in mangroves is primarily controlled by soil properties: A study at Dongzhai Bay, China. Sci Total Environ. 2018; 619–620: 1226–1235.

Win S, Towprayoon S, Chidthaisong A. Adaptation of mangrove trees to different salinity areas in the Ayeyarwaddy Delta Coastal Zone, Myanmar.Estuar Coast Shelf Sci. 2019; 228: 106389-106397

SNI. SNI 6989.7. Air dan Air Limbah – Bagian 7: Cara Uji Seng (Zn) secara Spektrofotometri Serapan Atom (SSA) - Nyala. Badan Standarisasi Nasional. Jakarta. 2009.

Lin Y, Lu J, Wu J. Heavy metals pollution and health risk assessment in farmed scallops: Low level of Cd in coastal water could lead to high risk of seafood. Ecotoxicol. Environ Saf. 2021; 208: 111768 (10p).

MacFarlane G., Pulkownik A, Burchett M. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.)Vierh.: biological indication potential. Environ Pollut. 2003; 123(1): 139–151.

Hilmi E, Sari LK, Amron A, Cahyo TN, Siregar AS. Mangrove cluster as adaptation pattern of mangrove ecosystem in Segara Anakan Lagoon. IOP Conf Ser : Earth Environ Sci. 2021; 746(1). 012022 (11p)

Ludwig J, Renold J. Statistical Ecology (A primer on Methods and computing). Toronto, Canada: John Wiley & Sons. In; 1988. 244 p.

Sari SP, Rosalina D. Mapping and Monitoring of Mangrove Density Changes on tin Mining Area. Procedia Environ Sci Eng Manag. 2016; 33: 436–442.

Ismail, Sulistiono, Hariyadi S, Madduppa H. Condition and mangrove density in Segara Anakan, Cilacap Regency, Central Java Province, Indonesia. AACL Bioflux. 2018;11(4): 1055–1068.

Jiang S, Weng B, Liu T, Su Y, Liu J, Lu H, et al. Response of phenolic metabolism to cadmium and phenanthrene and its influence on pollutant translocations in the mangrove plant Aegiceras corniculatum (L.) Blanco (Ac). Ecotoxicol Environ Saf. 2017; 141: 290–297.

Adyasari D, Pratama MA, Teguh NA, Sabdaningsih A, Kusumaningtyas MA, Dimova N. Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. Mar Pollut Bull. 2021; 171(March): 112689 (14p)

Barreto MB, Lo Mónaco S, Díaz R, Barreto-Pittol E, López L, Peralba M do CR. Soil organic carbon of mangrove forests (Rhizophora and Avicennia) of the Venezuelan Caribbean coast. Org Geochem. 2016; 100: 51–61.

Chen S, Chen B, Chen G, Ji J, Yu W, Liao J, et al. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata. Sci Total Environ. 2021; 752: 142279 (9p).

Choi JY, Jeong H, Choi KY, Hong GH, Yang DB, Kim K, et al. Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Mar Pollut Bull. 2020; 161: 111724 (12p).

Hao Z, Chen L, Wang C, Zou X, Zheng F, Feng W, et al. Heavy metal distribution and bioaccumulation ability in marine organisms from coastal regions of Hainan and Zhoushan, China. Chemosphere. 2019; 226: 340–350.

Xiao K, Li H, Shananan M, Zhang X, Wang X, Zhang Y, et al. Coastal water quality assessment and groundwater transport in a subtropical mangrove swamp in Daya Bay, China. Sci Total Environ. 2019; 646: 1419–1432.

Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, et al. Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicol. Environ Saf. 2017; 139: 272–279.

Xie Q, Qian L, Liu S, Wang Y, Zhang Y, Wang D. Assessment of long-term effects from cage culture practices on heavy metal accumulation in sediment and fish. Ecotoxicol Environ Saf. 2020; 194: 110433 (7p).

Liu S, Liu Y, Yang D, Li C, Zhao Y, Ma H, et al. Trace elements in shellfish from Shenzhen, China: Implication of coastal water pollution and human exposure. Environ Pollut. 2020; 263: 114582 (8p)

Liu L, Wang H jun, Yue Q. China’s coastal wetlands: Ecological challenges, restoration, and management suggestions. Reg Stud Mar Sci. 2020; 37: 101337 (37).

MacFarlane GR, Burchett MD. Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh. Environ Exp Bot. 1999; 41(2): 167–175.

Hilmi E, Sari LK, Setijanto. The mangrove landscaping based on Water Quality: (Case Study in Segara Anakan Lagoon and Meranti Island). IOP Conf. Ser: Earth Environ Sci . 2019; 255(1). https://doi.org/ 10.1088/1755-1315/255/1/012028

Penha-Lopes G, Kristensen E, Flindt M, Mangion P, Bouillon S, Paula J. The role of biogenic structures on the biogeochemical functioning of mangrove constructed wetlands sediments - A mesocosm approach. Mar Pollut Bull. 2010; 60(4): 560–572.

Sitoe AA, Mandlate LJC, Guedes BS. Biomass and carbon stocks of Sofala Bay mangrove forests. Forests. 2014; 5(8): 1967–1981.

Yu F, Tang S, Shi X, Liang X, Liu K, Huang Y, et al. Phytoextraction of metal(loid)s from contaminated soils by six plant species: A field study. Sci Total Environ. 2022; 804: 150282 (12 p)

McCutcheon SC, Susarla S, Medina VF. Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng. 2002; 18(5): 647–658.

Kagalkar AN, Jadhav MU, Bapat VA, Govindwar SP. Phytodegradation of the triphenylmethane dye Malachite Green mediated by cell suspension cultures of Blumea malcolmii Hook. Bioresour Technol. 2011; 102(22): 10312–10318.

Radziemska M, Gusiatin ZM, Cydzik-Kwiatkowska A, Cerdà A, Pecina V, Bęś A, et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere. 2021; 272: 129576 (16p).

Zhang X, Yu J, Huang Z, Li H, Liu X, Huang J, et al. Enhanced Cd phytostabilization and rhizosphere bacterial diversity of Robinia pseudoacacia L. by endophyte Enterobacter sp. YG-14 combined with sludge biochar. Sci Total Environ. 2021; 787: 147660 (12p).

de Oliveira DCM, Correia RRS, Marinho CC, Guimarães JRD. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere. 2015; 127: 214–221.

Yin P, Yin M, Cai Z, Wu G, Lin G, Zhou J. Structural inflexibility of the rhizosphere microbiome in mangrove plant Kandelia obovata under elevated CO2. Mar Environ Res. 2018; 140: 422–432.

St. Gelais AT, Costa-Pierce BA. Mercury concentrations in Northwest Atlantic winter-caught, male spiny dogfish (Squalus acanthias): A geographic mercury comparison and risk-reward framework for human consumption. Mar Pollut Bull. 2016; 102(1): 199–205.

Ariani F, Effendi H, Suprihatin. Water and sediment oil content spread in Dumai coastal waters, Riau Province, Indonesia. Egypt J Aquat Res. 2016; 42(4): 411–416.

Rachmatin D. Aplikasi Metode-metode Agglomerative Dalam Analisis Klaster Pada Data Tingkat Polusi Udara. Jurnal Ilmiah Infinity. 2014; 3(2): 133-149.

Downloads

Published

2023-08-01

Issue

Section

article

How to Cite

1.
The Ecological Risk Assessment of Mercury Contamination in a Mangrove Ecosystem of the Segara Anakan Cilacap, Indonesia. Baghdad Sci.J [Internet]. 2023 Aug. 1 [cited 2024 Apr. 27];20(4):1266. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7455

Similar Articles

You may also start an advanced similarity search for this article.