Landau damping of dust acoustic solitary waves in nonextensive dusty plasma
Main Article Content
Abstract
Dust acoustic (DA) solitary waves have been investigated under the influence of Landau damping in space dusty plasma with q-nonextensive velocity distributed of ions. The effect of the Landau damping, and nonextensive parameter q of the ions on DA solitary structures has been illustrated by a numerical solution of the Landau damping modified KdV equation. By applying the reductive perturbation technique (RPT) Korteweg-de Vries (KdV) an equation with an additional Landau damping term for our model has been derived. This study showed that the density of dusty particles plays an essential role in appearance or disappearance of DA solitary waves in dusty plasmas, and the nonextensive character of the ions has a noteworthy influence on the Landau damping phenomenon and formed nonlinear structures; the study provides a way to illustrate the physical mechanism of nonlinear propagation of DA solitary waves under Landau damping in the nonextensive distributed plasma in many fields, such as planetary areas, magnetospheres, and space plasma environments.
Received 08/10/2022
Revised 21/03/2023
Accepted 22/03/2023
Published Online First 20/09/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Bansal S, Aggarwal M. Effect of Nonadiabatic Dust Charge Variation on Evolution of Cylindrical/Spherical Shock Formation in a Space Dusty Plasma. Plasma Phys Rep. 2022 Mar; 48(3): 279-88. https://doi.org/10.1134/S1063780X22030023 .
Motevalli SM, Mohsenpour T, Dashtban N. Ion‐and positron‐acoustic solitons in magnetized dusty plasma with q‐non‐extensive electron and positron velocity distribution. Contrib. Plasma Phys. 2019 Jan; 59(1): 111-121. https://doi.org/10.1002/ctpp.201800027 .
Kamran M, Sattar F, Khan M, Khan R, Ikram M. Dust-ion-acoustic shock waves in the presence of dust charge fluctuation in non-Maxwellian plasmas with Kappa-distributed electrons. Results Phys. 2021 Feb 1; 21: 103808. https://doi.org/10.1016/j.rinp.2020.103808 .
Mahdi SS, Aadim KA, Khalaf MA. New Spectral Range Generations from Laser-plasma Interaction. Baghdad Sci J. 2021 Dec 1; 18(4): 1328-37. https://doi.org/10.21123/bsj.2021.18.4.1328 .
Gill TS, Bansal S. Collisionless damping of nonplanar dust acoustic waves due to dust charge fluctuation in nonextensive polarized plasma. Phys Scr. 2021 May 3; 96(7): 075605. https://doi.org/10.1088/1402-4896/abfa40 .
Denysenko IB, von Wahl E, Labidi S, Mikikian M, Kersten H, Gibert T, et al. Modeling of argon–acetylene dusty plasma. Plasma Phys Control Fusion. 2018 Nov 13; 61(1): 014014. https://doi.org/10.1088/1361-6587/aade2d .
Mushinzimana X, Nsengiyumva F, Yadav LL, Baluku TK. Dust ion acoustic solitons and double layers in a dusty plasma with adiabatic positive dust, adiabatic positive ion species, and Cairns-distributed electrons. AIP Adv. 2022 Jan 1; 12(1): 015208. https://doi.org/10.1063/5.0076894 .
Pakzad HR, Nobahar D. Dust-ion acoustic solitons in superthermal dusty plasmas. New Astron Rev. 2022 May 1; 93: 101752. https://doi.org/10.1016/j.newast.2021.101752 .
Gao DN, Zhang ZR, Wu JP, Luo D, Duan WS, Li ZZ. Cylindrical and Spherical Dust-Ion Acoustic Solitary Waves by Damped Korteweg-de Vries-Burgers Equation. Brazilian J Phys. 2019 Oct; 49(5): 693-7. https://doi.org/10.1007/s13538-019-00687-0 .
Ghosh UN, Mandi L, Chatterjee P. Effect of dust-ion collision on superthermal plasmas in cylindrical and spherical geometry. arXiv preprint arXiv: 2021; 2112.03263. https://doi.org/10.48550/arXiv.2112.03263 .
Kabalan N, Ahmad M, Asad A. Study of Dust-Acoustic Multisoliton Interactions in Strongly Coupled Dusty Plasmas. Adv Math Phys. 2020 Nov 16; 2020. https://doi.org/10.1155/2020/2717193 .
Fellah S, Kerrouchi S, Amour R. Low‐frequency variable charge solitary waves in a collisionless dusty plasma with a Cairns‐Gurevich ion velocity distribution. Contrib. Plasma Phys. 2022 Jan; 62(1): e202100035. https://doi.org/10.1002/ctpp.202100035 .
Taraldsen G, Tufto J, Lindqvist BH. Improper priors and improper posteriors. Scand J Stat. 2022 Sep; 49(3): 969-91. https://doi.org/10.1111/sjos.12550 .
Tsallis C. Beyond Boltzmann–Gibbs–Shannon in physics and elsewhere. Entropy. 2019 Jul 15; 21(7): 696. https://doi.org/10.3390/e21070696 .
Abdelwahed HG, El-Shewy EK, Abdelrahman MA, Alghanim S, Alsarhan AF, El-Rahman AA. The nonextensive effects on the supersoliton structure in critical plasma state. Chin J Phys. 2022 Jun 1; 77: 1987-96. https://doi.org/10.1016/j.cjph.2021.12.003 .
Verheest F. Ambiguities in the Tsallis description of non-thermal plasma species. J Plasma Phys. 2013 Dec; 79(6): 1031-4. https://doi.org/10.1017/S0022377813001049.
Francis FC. Introduction to plasma physics and controlled fusion. New York: Springer Cham; 2015. 490. https://edisciplinas.usp.br/pluginfile.php/5913606/course/section/6090129/Chen.pdf
Ott E, Sudan RN. Damping of solitary waves. Phys Fluids. 1970 Jun; 13(6): 1432-4. https://doi.org/10.1063/1.1693097 .
Dalui S, Bandyopadhyay A. Effect of Landau damping onion acoustic solitary waves in a collisionless unmagnetized plasma consisting of nonthermal and isothermal electrons. Indian J Phys. 2021 Feb; 95(2): 367-81. https://doi.org/10.1007/s12648-020-01731-5
Zhang H, Yang Y, Zhang J, Hong XR, Lin MM, Yang L, et al. Landau damping in a multi-component dusty plasma. Phys Plasmas. 2014 Nov 18; 21(11): 113706. https://doi.org/10.1063/1.4901576 .
Misra AP, Barman A. Landau damping of Gardner solitons in a dusty bi-ion plasma. Phys Plasmas. 2015 Jul 28; 22(7): 073708. https://doi.org/10.48550/arXiv.1504.00089 .
Sikdar A, Khan M. Effects of Landau damping on finite amplitude low-frequency nonlinear waves in a dusty plasma. J Theor Appl Phys. 2017 Jun; 11(2): 137-42. https://doi.org/ 10.1007/s40094-017-0248-x .
Ghai Y, Saini NS, Eliasson B. Landau damping of dust acoustic solitary waves in nonthermal plasmas. Phys Plasmas. 2018 Jan 10; 25(1): 013704. https://doi.org/10.1063/1.5011005 .
Ghai Y, Saini NS. Landau damping of dust acoustic solitary waves in a superthermal dusty plasma. arXiv preprint arXiv: 2017; 25(7): 013704. https://doi.org/10.1063/1.5011005 .
Das J, Bandyopadhyay A, Das KP. Effect of Landau damping on alternative ion-acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons. arXiv preprint arXiv: 2015; 1507.06733. https://doi.org/10.48550/arXiv.1507.06733 .
Fodil A, Younsi S, Amour R. Effect of external oblique magnetic field on the nonextensive dust acoustic soliton energy. Eur Phys J Plus. 2020 May; 135(5): 1-4. https://doi.org/10.1140/epjp/s13360-020-00404-w.
Arab N, Amour R, Bacha M. Contribution of higher order corrections to the dust acoustic soliton energy in non-Maxwellian dusty plasma. Plasma Phys Control Fusion. 2019 Jun; 73(6): 1-7. https://doi.org/10.1140/epjd/e2019-100091-x .
El-Taibany WF, Zedan NA, Taha RM. Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons. Astrophys Space Sci. 2018 Jun; 363(6): 1-6. https://doi.org/10.1007/s10509-018-3348-4.
Mazhir SN, Abdullah NA, al-Ahmed HI, Harb NH, Abdalameer NK. The effect of gas flow on plasma parameters induced by microwave. Baghdad Sci J. 2018; 15(2): 0205. https:/doi.org/10.21123/bsj.2018.15.2.0205.
Ourabah K. Generalized statistical mechanics of stellar systems. Phys Rev E. 2022 Jun 8; 105(6): 064108. https://doi.org/10.1103/PhysRevE.105.064108 .