Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method

Main Article Content

Mohammed G. S. AL-Safi
https://orcid.org/0000-0002-8887-7194
Rand Muhaned Fawzi
Wurood R. Abd AL-Hussein

Abstract

This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient

Article Details

How to Cite
1.
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method. Baghdad Sci.J [Internet]. 2023 Jun. 20 [cited 2025 Jan. 25];20(3(Suppl.):1087. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7802
Section
article
Author Biography

Mohammed G. S. AL-Safi, Department of Accounting- Al-Esraa University College, Baghdad, Iraq

Faculty Member - Accounting Department, Al-Esraa University College. Also, I do research in applied mathematics

How to Cite

1.
Numerical Solutions for the Nonlinear PDEs of Fractional Order by Using a New Double Integral Transform with Variational Iteration Method. Baghdad Sci.J [Internet]. 2023 Jun. 20 [cited 2025 Jan. 25];20(3(Suppl.):1087. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7802

References

Kilbas AA. Theory and applications of fractional differential equations. 1st ed. Amsterdam: Elsevier; 2006. 540 p.

Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. 1st ed. New York: Wiley; 1993. 384 p.

Igor Podlubny. Fractional differential equations. 1st ed. San Diego, Boston: Academic press; 1999. 368 p.

Ahmed SA, Elzaki TM, Elbadri M, Mohamed MZ. Solution of partial differential equations by new double integral transform (Laplace - Sumudu transform). Ain Shams Eng J. 2021 Dec; 12(4): 4045–9. https://doi.org/10.1016/j.asej.2021.02.032.

Akgül EK, Akgül A, Yavuz M. New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives. Chaos Solit. Fractals. 2021 May; 146: 110877. https://doi.org/10.1016/j.chaos.2021.110877.

Elbadri M, Ahmed SA, Abdalla YT, Hdidi W. A New Solution of Time-Fractional Coupled KdV Equation by Using Natural Decomposition Method. Abstr Appl Anal. 2020 Sep 1; 2020: 01–9. https://doi.org/10.1155/2020/3950816.

Kumar S, Kumar D, Abbasbandy S, Rashidi MM. Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng J. 2014 Jun; 5(2): 569–74. https://doi.org/10.1016/j.asej.2013.11.004.

He J H. A variational iteration approach to nonlinear problems and its applications. Mech Appl. 1998: 20(1): 30–31. DOI: 10.4236/jamp.2016.411201.

Sharma D, Samra GS, Singh P. Approximate solution for fractional attractor one-dimensional Keller-Segel equations using homotopy perturbation sumudu transform method. Nonlinear Eng. 2020 Aug 29; 9(1): 370–81. https://ui.adsabs.harvard.edu/link_gateway/2020NLE.....9..370S/doi:10.1515/nleng-2020-0023.

Al-Khaled K. Solving a Generalized Fractional Nonlinear Integro-Differential Equations via Modified Sumudu Decomposition Transform. Axioms. 2022 Aug 11; 11(8): 398. https://doi.org/10.3390/axioms11080398.

Singh P, Sharma D. Comparative study of homotopy perturbation transformation with homotopy perturbation Elzaki transform method for solving nonlinear fractional PDE. Nonlinear Eng. 2019 Sep 25; 9(1): 60–71. https://ui.adsabs.harvard.edu/link_gateway/2019NLE.....9...60S/doi:10.1515/nleng-2018-0136.

Hassan MA, Elzaki TM. Double Elzaki Transform Decomposition Method for Solving Third Order Korteweg-De-Vries Equations. J Appl Math Phys. 2021; 09(01): 21–30. https://doi.org/10.4236/jamp.2021.91003.

Richard M, Zhao W. Padé-Sumudu-Adomian Decomposition Method for Nonlinear Schrödinger Equation. Carpentieri B, editor. J Appl Math. 2021 Mar 5; 2021: 1–19. https://doi.org/10.1155/2021/6626236.

Mohamed MZ, Elzaki TM, Algolam MS, Abd Elmohmoud EM, Hamza AE. New Modified Variational Iteration Laplace Transform Method Compares Laplace Adomian Decomposition Method for Solution Time-Partial Fractional Differential Equations. Werner F, editor. J Appl Math. 2021 Mar 19; 2021: 1–10. https://doi.org/10.1155/2021/6662645.

Ahmed SA, Elzaki TM. On the comparative study integro – Differential equations using difference numerical methods. J King Saud Univ Sci. 2020 Jan; 32(1): 84–9. https://doi.org/10.1016/j.jksus.2018.03.003.

Hassan MA, Elzaki TM. Double Elzaki Transform Decomposition Method for Solving Non-Linear Partial Differential Equations. J Appl Math Phys. 2020; 08(08): 1463–71. https://doi.org/10.4236/jamp.2020.88112.

Kadhem HS, Hasan SQ. On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations. Baghdad Sci J. 2021 Feb 21; 18(3): 0509. https://doi.org/10.21123/bsj.2021.18.3.0509.

Ahmed SA. A Comparison between Modified Sumudu Decomposition Method and Homotopy Perturbation Method. Appl Math. 2018; 09(03): 199–206. https://doi.org/10.4236/am.2018.93014.

Ahmed SA, Elbadri M, Mohamed MZ. A New Efficient Method for Solving Two-Dimensional Nonlinear System of Burger’s Differential Equations. Abstr Appl Anal. 2020 Feb 11; 2020: 1–7. https://doi.org/10.1155/2020/7413859.

Ahmed SA, Elzaki TM, Hassan AA. Solution of Integral Differential Equations by New Double Integral Transform (Laplace–Sumudu Transform). Celebi O, editor. Abstr Appl Anal. 2020 Oct 18; 2020: 1–7. https://doi.org/10.1155/2020/4725150.

Ezoo Hamza A. Application of Homotopy Perturbation and Sumudu Transform Method for Solving Burgers Equations. Am J Theor Appl Stat. 2015; 4(6): 480-483. doi: 10.11648/j.ajtas.20150406.18.

AL-Safi MGS. An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method. Baghdad Sci J. 2018 Sep 13; 15(3): 4045-049. http://dx.doi.org/10.21123/bsj.2018.15.3.0344.

AL-Safi MGS, Hummady LZ. Approximate Solution for advection dispersion equation of time Fractional order by using the Chebyshev wavelets-Galerkin Method. Iraqi J Sci. 2021 Dec. 2; 58(3B):1493-502. DOI: 10.24996/ ijs.2017.58.3B.14.

Mohammed OH. AL-Safi MGS. Yousif AA. Numerical Solution for Fractional Order Space-Time Burger’s Equation Using Legendre Wavelet-Chebyshev Wavelet Spectral Collocation Method. ANJS. 2018: 21(1): 121–127. DOI: 10.22401/JUNS.21.1.19.

Nazeer M, Hussain A, Hameed MK. Impact of nano metallic particles and magnetic force on multi-phase flow of third-grade fluid in divergent channel: analytical study. Int J Model Simul. 2022 Jun 20: 1–12. https://doi.org/10.1080/02286203.2022.2088023.

Nazir MW, Javed T, Ali N, Nazeer M, Khan MI. Theoretical investigation of thermal analysis in aluminum and titanium alloys filled in nanofluid through a square cavity having the uniform thermal condition. Int J Mod Phys B. 2022 Jul 1; 36(22):2250140. https://doi.org/10.1142/S0217979222501405.

Nazeer M, Ramesh K, Farooq H, Shahzad Q. Impact of gold and silver nanoparticles in highly viscous flows with different body forces. IJMS. 2022 Jun 17: 1–17. https://doi.org/10.1080/02286203.2022.2084217.

Nazeer M, Al-Zubaidi A, Hussain F, Duraihem FZ, Anila S, Saleem S. Thermal transport of two-phase physiological flow of non-Newtonian fluid through an inclined channel with flexible walls. Case Stud Therm Eng. 2022 Jul; 35: 102146. https://doi.org/10.1016/j.csite.2022.102146.

Yassen MF, Mahrous YM, Nazeer M, Pasha AA, Hussain F, Khalid K, et al. Theoretical study of transport of MHD peristaltic flow of fluid under the impact of viscous dissipation. Waves Random Complex Media. 2022 May 30; 1–22. https://doi.org/10.1080/17455030.2022.2078519.

Al-Zubaidi A, Nazeer M, Khalid K, Yaseen S, Saleem S, Hussain F. Thermal analysis of blood flow of Newtonian, pseudo-plastic, and dilatant fluids through an inclined wavy channel due to metachronal wave of cilia. Adv Mech Eng. 2021 Sep; 13(9): 168781402110490. https://doi.org/10.1177/16878140211049060.

Nazeer M, Saleem S, Hussain F, Zia Z, Khalid K, Feroz N. Heat transmission in a magnetohydrodynamic multiphase flow induced by metachronal propulsion through porous media with thermal radiation. Proc Inst Mech Eng Part E: J Mech Eng. 2022 Feb 2: 095440892210752. https://doi.org/10.1177/09544089221075299.

Nazeer M, Hussain F, Ahmad F, Iftikhar S, Subia GS. Theoretical study of an unsteady ciliary hemodynamic fluid flow subject to the Newton’s boundary conditions. Adv Mech Eng. 2021 Aug; 13(8): 168781402110404. https://doi.org/10.1177/16878140211040462.

Chu Y-M, Nazeer M, Khan MI, Ali W, Zafar Z, Kadry S, et al. Entropy analysis in the Rabinowitsch fluid model through inclined Wavy Channel: Constant and variable properties. Int Commun Heat Mass Transf. 2020 Dec; 119: 104980. https://doi.org/10.1016/j.icheatmasstransfer.2020.104980.

Chu Y-M, Nazeer M, Khan MI, Hussain F, Rafi H, Qayyum S, et al. Combined impacts of heat source/sink, radiative heat flux, temperature dependent thermal conductivity on forced convective Rabinowitsch fluid. Int Commun Heat Mass Transf. 2021 Jan;120: 105011. https://doi.org/10.1016/j.icheatmasstransfer.2020.105011.

Nazeer M, Saleem S, Hussain F, Iftikhar S, Al-Qahtani A. Mathematical modeling of bio-magnetic fluid bounded by ciliated walls of wavy channel incorporated with viscous dissipation: Discarding mucus from lungs and blood streams. Int Commun Heat Mass Transf. 2021 May; 124: 105274. https://doi.org/10.1016/j.icheatmasstransfer.2021.105274.

Nazeer M, Hussain F, Iftikhar S, Ijaz Khan M, Ramesh K, Shehzad N, et al. Mathematical modeling of bio‐magnetic fluid bounded within ciliated walls of wavy channel. Numer Methods Partial Differential Eq. 2021 Jan 20: https://doi.org/10.1002/num.22763.

Nazeer M, Hussain F, Shabbir L, Saleem A, Khan MI, Malik MY, et al. A comparative study of MHD fluid-particle suspension induced by metachronal wave under the effects of lubricated walls. IJMPB. 2021 Jul 31; 35(20): 2150204. https://doi.org/10.1142/S0217979221502040.

AL-Safi MGS, AL-Hussein WRA, Al-Shammari AGN. A new approximate solution for the Telegraph equation of space-fractional order derivative by using Sumudu method. Iraqi J Sci. 2018 Jul. 29; 59(3A):1301-311. DOI:10.24996/ijs.2018.59.3A.18.

AL-Safi MGS, AL-Hussein WRA, Fawzi RM. Numerical and Analytical Solutions of Space-Time Fractional Partial Differential Equations by Using a New Double Integral Transform Method. Iraqi J Sci. 2023 Apr. 30;64(4):1935-47. doi: 10.24996/ijs.2023.64.4.31.

AL-Safi, M., Yousif, A., Abbas, M. Numerical investigation for solving non-linear partial differential equation using Sumudu-Elzaki transform decomposition method. International Journal of Nonlinear Analysis and Applications, 2022; 13(1): 963-973. https://doi.org/10.22075/ijnaa.2022.5615.

Idrees MI, Ahmed Z, Awais M, Perveen Z. On the convergence of double Elzaki transform. International Journal of ADVANCED AND APPLIED SCIENCES. 2018 Jun;5(6):19–24. https://doi.org/10.21833/ijaas.2018.06.003.

Ahmed Z, Imran Idrees M, Bin Muhammad Belgacem F, Perveen Z. On the convergence of double Sumudu transform. JNSA. 2019 Dec 4;13(03):154–62. http://dx.doi.org/10.22436/jnsa.013.03.04.

Ziane D, Elzaki TM, Hamdi Cherif M. Elzaki transform combined with variational iteration method for partial differential equations of fractional order. FUJMA. 2018 Jun 30; 1(1): 102–8.

Aruldoss R. Jasmine G. Numerical Solutions of Time Fractional Nonlinear Partial Differential Equations Using Yang Transform Combined with Variational Iteration Method. GJPAM. 2020: 16(2): 249–260.

Mohamed MZ, Elzaki TM. Applications of new integral transform for linear and nonlinear fractional partial differential equations. J King Saud Univ Sci. 2020 Jan; 32(1): 544–9.https://doi.org/10.1016/j.jksus.2018.08.003.