Association of pvc genes expression with Biofilm formation in Clinical Isolates of Pseudomonas aeruginosa

Authors

DOI:

https://doi.org/10.21123/bsj.2023.7823

Keywords:

Antimicrobial Resistance, Biofilm formation, cupB, Gene expression, pvc genes, RT-qPCR, rhlR.

Abstract

PvcABCD are cluster of genes found in Pseudomonas aeruginosa. The research was designed to examine the relationship between the pvc genes expression and cupB gene, which plays a crucial role in the development of biofilm, and rhlR, which regulates the expression of biofilm-related genes, and to investigate whether the pvc genes form one or two operons. The aims were achieved by employing qRT-PCR technique to measure the gene expression of genes of interest. It was found that out of 25 clinical isolates, 21 isolates were qualified as P.aeruginosa. Amongst, 18(85.7%) were evaluated as biofilm producers, 10 (47.6%), 5 (23.8%), and 3 (14.2%) were evaluated as strong, moderate and weak producers respectively, while, 3 (14.2%) were considered as a non-biofilm forming isolate. The pvcA and pvcB were shown to be over-expressed (>2) fold in all biofilm-producer isolates, similar to that observed in cupB and rhlR, while pvcC and pvcD showed to be down-regulated (<0.5) fold in these isolates. These findings imply that the pvc genes are organized into two operons, pvcAB, and pvcCD, and genes involved in biofilm formation are regulated by pvcAB operon. This is the first study in Iraq to investigate these genes.

References

Alkaabin SA. Bacterial Isolates and Their Antibiograms of Burn Wound Infections in Burns Specialist Hospital in Baghdad. Baghdad Sci.J. 2013; 10(2): 331-340. https://doi.org/10.21123/bsj.2013.10.2.331-340

Shehab ZH, Ahmed ST, Abdallah NM. Genetic variation of pilB gene in Pseudomonas aeruginosa isolated from Iraqi patients with burn infections. Ann. Trop. Med. Public Health. 2020; 23(16): 1-12. http://dx.doi.org/10.36295/ASRO.2020.231615

Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-β-lactamase- mediated resistance among clinical carbapenem- resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Ci Ji Yi Xue Za Zhi. 2018; 30(2): 90–96. https://doi.org/10.4103/tcmj.tcmj_101_17

Eladawy M, El-Mowafy M, El-Sokkary MMA, Barwa R. Antimicrobial resistance and virulence characteristics in ERIC-PCR typed biofilm forming isolates of P. aeruginosa. Microb Pathog.2021; 158 :105042. https://doi.org/10.1016/j.micpath.2021.105042

Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infec Control. 2017 May 15; 6(1): 1-8. https://doi.org/10.1186/s13756-017-0208-x

Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1): 7–11. https://doi.org/10.1016/j.jcma.2017.07.012

Qaisar U, Luo L, Haley CL, Brady SF, Carty NL, Colmer-Hamood JA, et al. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes. PloS One. 2013; 8(4): e62735. https://doi.org/10.1371/journal.pone.0062735

Vallet I, Olson JW, Lory S, Lazdunski A, Filloux A. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A. 2001; 98(12): 6911–6916. https://doi.org/10.1073/pnas.111551898

Vetrivel A, Ramasamy M, Vetrivel P, Natchimuthu S, Arunachalam S, Kim G-S, et al. Pseudomonas aeruginosa Biofilm Formation and Its Control. Biologics (Basel). 2021 Oct 15; 1(3): 312–36. https://doi.org/10.3390/biologics1030019

Clarke-Pearson MF, Brady SF. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J Bacteriol. 2008; 190(20): 6927–6930. https://doi.org/10.1128/JB.00801-08

Brady SF, Bauer JD, Clarke-Pearson MF, Daniels R. Natural Products fromisnA-Containing Biosynthetic Gene Clusters Recovered from the Genomes of Cultured and Uncultured Bacteria. J Am Chem Soc. 2007; 129(40): 12102–12103. https://doi.org/10.1021/ja075492v

Stintzi A, Johnson Z, Stonehouse M, Ochsner U, Meyer J-M, Vasil ML, et al. The pvc Gene Cluster of Pseudomonas aeruginosa : Role in Synthesis of the Pyoverdine Chromophore and Regulation by PtxR and PvdS. J Bacteriol. 1999;181(13):4118–4124. https://doi.org/10.1128/JB.181.13.4118-4124.1999

Hillenbrand ME, Thompson PP, Shanks RMQ, Kowalski RP. Validation of PCR for the detection of Pseudomonas aeruginosa from corneal samples. Int J Ophthalmol. 2011; 4(3): 262–268. https://doi.org/10.3980/j.issn.2222-3959.2011.03.10

Sheikh AF, Ghanbari F, Afzali M, Shahin M. Isolation of Oxidase-Negative Pseudomonas aeruginosa from Various Specimens. Iran J Public Health. 2020; 49(6): 1186-1188. https://doi.org/10.18502/ijph.v49i6.3376

Lima JL da C, Alves LR, Paz JNP da, Rabelo MA, Maciel MAV, Morais MMC de. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-associated pneumonia. Rev Bras Ter Intensiva. 2017; 29(3): 310-316. https://doi.org/10.5935/0103-507X.20170039

Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000 Apr; 40(2): 175–179. https://doi.org/10.1016/s0167-7012(00)00122-6

James S, Melvin P, April M, Shelley Campeau, Sharon K, Marcelo F, et al Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 32nd informational supplement; CLSI document M100-S32. Wayne: CLSI; 2022.

Augustyniak A, Cendrowski K, Grygorcewicz B, Jabłońska J, Nawrotek P, Trukawka M, et al. The Response of Pseudomonas aeruginosa PAO1 to UV-activated Titanium Dioxide/Silica Nanotubes. Int J Mol Sci. 2020 Oct 20; 21(20): 7748. https://doi.org/10.3390/ijms21207748

Al-Taai ME, Aziz IH, Marhoon AA. Identification Pseudomonas aeruginosa by 16s rRNA gene for Differentiation from Other Pseudomonas Species that isolated from Patients and environment. Baghdad Sci.J. 2014; 11 (2): 1028–1034. https://doi.org/10.21123/bsj.2014.11.2.1028-1034

Al-Tememe T, Abbas B. Molecular Detection and Phylogenetic Analysis of Pseudomonas aeruginosa Isolated from Some Infected and Healthy Ruminants in Basrah, Iraq. Arch Razi Inst. 2022; 77(2): 537-544. https://doi.org/10.22092/ARI.2022.357802.2099

AL-Shimmary SM. Comparison the molecular and conventional identification of Pseudomonas aeruginosa isolated from diabetes type II and other diseases. Msc [Dissertation]. Baghdad. Baghdad University. 2016. https://doi.org/10.13140/RG.2.2.36640.81927

Golpayegani A, Nodehi RN, Rezaei F, Alimohammadi M, Douraghi M. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep. 2019; 46(4): 4049–4061. https://doi.org/10.1007/s11033-019-04855-y

Chen J-W, Lau YY, Krishnan T, Chan K-G, Chang C-Y. Recent advances in molecular diagnosis of pseudomonasaeruginosa infection by state-of-the-art genotyping techniques. Front Microbiol. 2018; 9: 1-8 https://doi.org/10.3389/fmicb.2018.01104.

Hassan KI, Abdullah SR. Detection of Pseudomonas aeruginosain Clinical Samples Using PCR Targeting ETA and gyrB Genes. Baghdad Sci. J. 2018; 15(4): 401-405. https://doi.org/10.21123/bsj.2018.15.4.0401

Gürtler V, Subrahmanyam G, Shekar M, Maiti B, Karunasagar I.: Chaptere 12 Bacterial Typing and Identification by Genomic Analysis of 16S–23S rRNA Intergenic Transcribed Spacer (ITS) Sequences. Methods Microbiol. 2014; 41: 253- 274. https://doi.org/10.1016/bs.mim.2014.07.004

Perez LRR, Machado ABMP, Barth AL. The Presence of Quorum-Sensing Genes in Pseudomonas isolates Infecting Cystic Fibrosis and Non-cystic Fibrosis Patients. Curr Microbiol. 2013; 66(4): 418–420. https://doi.org/10.1007/s00284-012-0290-5

Lima JL da C, Alves LR, Jacomé PRL de A, Bezerra Neto JP, Maciel MAV, Morais MMC de. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis. 2018; 22(2): 129–136. https://doi.org/10.1016/j.bjid.2018.03.003

Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm- related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020; 13(1): 1-6. https://doi.org/10.1186/s13104-020-4890-z

Ratajczak M, Kamińska D, Nowak-Malczewska D, Schneider A, Dlugaszewska J. Relationship between antibiotic resistance, biofilm formation, genes coding virulence factors and source of origin of Pseudomonas aeruginosa clinical strains. Ann Agric Environ Med. 2020; 28(2): 306-313. https://doi.org/10.26444/aaem/122682

Alzubaidy MW, Almohaidi AM, Sultan AA, AL- Shimmary SM. Virulence gene of Pseudomonas aeruginosa with nanoparticle. AIP Conf Proc.2019; https://doi.org/10.1063/1.5116966.

Khodair ZT, Alzubaidy MW, Almohaidi AM, Sultan AA, AL-Shimmary SM, Albusultan SS. Synthesis of copper oxide nanoparticles (CuO-NPs) and its evaluation of antibacterial activity against P. aeruginosa biofilm genes. AIP Conf Proc. 2019; https://doi.org/10.1063/1.5138492.

Da Silva Carvalho T, Rodrigues Perez LR. Impact of biofilm production on polymyxin B susceptibility among Pseudomonas aeruginosa clinical isolates. Infect Control Hosp Epidemiol. 2019; 40(6): 739–740. https://doi.org/10.1017/ice.2019.85

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018; 18(3): 318–327.https://doi.org/10.1016/S1473-3099(17)30753-3

Jones RN, Guzman-Blanco M, Gales AC, Gallegos B, Castro ALL, Martino MDV, et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis. 2013; 17(6): 672–681. https://doi.org/10.1016/j.bjid.2013.07.002

Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, Donato MD. Aminoglycoside Resistance Genes in Pseudomonas aeruginosa isolates from Cumana, Venezuela. Rev Inst Med Trop Sao Paulo. 2016; 58(13): 1-5. https://doi.org/10.1590/S1678-9946201658013

Rosenthal VD, Duszynska W, Ider B-E, Gurskis V, Al-Ruzzieh MA, Myatra SN, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary of 45 countries for 2013-2018, Adult and Pediatric Units, Device-associated Module. Am J Infect Control. 2021; 49(10): 1267–1274. https://doi.org/10.1016/j.ajic.2021.04.077

Hussain ZM, Kadhim HS, Hassan JS. Detection of New Delhi Metallo-Beta-Lactamase-1 (blaNDM-1) in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Clinical Samples in Wasit Hospitals. Iraqi JMS. 2018; 16(3): 239-246. https://doi.org/10.22578/IJMS.16.3.3.

Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. Gene Rep. 2019; 17: 100546. https://doi.org/10.1016/j.genrep.2019.100546

Vaněrková M, Mališová B, Kotásková I, Holá V, Růžička F, Freiberger T. Biofilm formation, antibiotic susceptibility and RAPD genotypes in Pseudomonas aeruginosa clinical strains isolated from single centre intensive care unit patients. Folia Microbiol (Praha). 2017; 62(6): 531–538. https://doi.org/10.1007/s12223-017-0526-7

Yekani M, Memar M, Alizadeh N, Safaei N, Ghotaslou R. Antibiotic Resistance Patterns of Biofilm-Forming Pseudomonas aeruginosa Isolates from Mechanically Ventilated Patients. Int J Sci Study. 2017; 84: 84. https://doi.org/10.17354/ijssI/2017/106

Vipin CK. Biotechnological applications of quorum sensing inhibitors. 1st ed. Singapore: Springer Singapore; 2018. https://doi.org/10.1007/978-981-10-9026-4

Markus V, Golberg K, Teralı K, Ozer N, Kramarsky-Winter E, Marks RS, et al. Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Pseudomonas aeruginosa Quorum Sensing. Molecules. 2021 Mar15; 26(6): 1-14. https://doi.org/10.3390/molecules26061620

Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018; 26(3): 226–236. https://pubmed.ncbi.nlm.nih.gov/30246765/

Hou W, Sun X, Wang Z, Zhang Y. Biofilm- Forming Capacity of Staphylococcus epidermidis , Staphylococcus aureus , and Pseudomonas aeruginosa from Ocular Infections. Invest Ophthalmol Vis Sci. 2012; 53(9): 5624–5631. https://doi.org/10.1167/iovs.11-9114

Singh S, Singh SK, Chowdhury I, Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol J. 2017; 11(1): 53–62. https://doi.org/10.2174/1874285801711010053

Clark DP, Nanette JP, Mcgehee MR. Molecular biology, 3rd Edition. Amsterdam: Academic Cell. 2019. https://doi.org/10.1016/C2015-0-06229-3

Ugwuanyi FC, Ajayi A, Ojo DA, Adeleye AI, Smith SI. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob. 2021; 20(1): 11. https://doi.org/10.1186/s12941-021-00417-y

Downloads

Published

2024-02-01

Issue

Section

article

How to Cite

1.
Association of pvc genes expression with Biofilm formation in Clinical Isolates of Pseudomonas aeruginosa. Baghdad Sci.J [Internet]. 2024 Feb. 1 [cited 2024 Apr. 28];21(2):0261. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7823

Similar Articles

You may also start an advanced similarity search for this article.