Study the Chemical Bonding of Heterometallic Trinuclear Cluster Containing Cobalt and Ruthenium: [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3] using QTAIM Approach

Main Article Content

Ahlam Hussein Hassan
Muhsen Abood Muhsen Al-Ibadi
https://orcid.org/0009-0006-5882-7483

Abstract

 


The topological parameters of the metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3]1 (Cp* = η5 -C5Me4Et), (Cp = η5 -C5Me5), was explored by using the Quantum Theory of Atoms-in-Molecules (QTAIM). The properties of bond critical points such as the bond delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible thanks to these results. In the core of the heterometallic tetrahydrido cluster, the Ru2CoH4 part, the calculations show no existence of any bond critical points (BCP) or identical bond paths (BPs) between Ru-Ru and Ru-Co. Electron densities are determined by the position of bridging hydride atoms coordinated to Ru-Ru and Ru-Co, which significantly affects the bonds between these transition metal atoms. On the other hand, the results confirm that the cluster under study contains a 7c–11e bonding interaction delocalized over M3H4, as shown by the non-negligible delocalization index calculations. The small values for electron density ρ(b) above zero, together with the small values, again above zero, for Laplacian ∇2ρ(b) and the small positive values for total energy density H(b), are shown by the Ru-H and Co-H bonds in this cluster is typical for open-shell interactions. Also, the topological data for the bond interactions between Co and Ru metal atoms with the C atoms of the cyclopentadienyl Cp ring ligands are similar. They show properties very identical to open-shell interactions in the QTAIM classification.

Article Details

How to Cite
1.
Study the Chemical Bonding of Heterometallic Trinuclear Cluster Containing Cobalt and Ruthenium: [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3] using QTAIM Approach. Baghdad Sci.J [Internet]. 2023 Jun. 20 [cited 2024 Dec. 19];20(3(Suppl.):1078. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7937
Section
article

How to Cite

1.
Study the Chemical Bonding of Heterometallic Trinuclear Cluster Containing Cobalt and Ruthenium: [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3] using QTAIM Approach. Baghdad Sci.J [Internet]. 2023 Jun. 20 [cited 2024 Dec. 19];20(3(Suppl.):1078. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7937

References

Cheng X, Lei A, Mei TS, Xu HC, Xu K, Zeng C. Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chem. 2022;4(4):1120-52. https://dx.doi.org/10.31635/ccschem.021.202101451

Muhsen Al-Ibadi MA, Taha A, Hasan Duraid AH, Alkanabi T. A theoretical investigation on chemical bonding of the bridged hydride triruthenium cluster: [Ru3 (μ-H)(μ3-κ2-hamphox-N,N)(CO)9]. Baghdad Sci J. 2020;17(2):488-93. https://dx.doi.org/10.21123/bsj.2020.17.2.0488

Chikamori H, Tahara A, Takao T. Transformation of a μ3-Benzyne Ligand into Phenol on a Cationic Triruthenium Cluster Supported by a μ3-Sulfido Ligand. Organometallics 2018;38(2):527-35. https://dx.doi.org/10.1021/acs.organomet.8b00832

Takao T, Suzuki H, Shimogawa R. Syntheses and properties of triruthenium polyhydrido complexes composed of 1,2,4-tri-tert-butylcyclopentadienyl and p-Cymene ruthenium units. Organometallics 2021;40(9):1303-13. https://dx.doi.org/10.1021/acs.organomet.1c00094

Daniels C, Gi E, Atterberry B, Blome-Fernández R, Rossini A, Vela J. Phosphine Ligand Binding and Catalytic Activity of Group 10–14 Heterobimetallic Complexes. Inorg Chem. 2022;61(18):6888-97. https://dx.doi.org/10.1021/acs.inorgchem.2c00229

AL-Nafee, M. Metal-Metal Bonding in Poly-Metallic Systems. PhD thesis, University of Oxford, 2019. https://ora.ox.ac.uk/objects/uuid:95f6c115-e1de-40b3-8f0b-eb6ce93e78b0

Kaneko T, Takao T. Reaction of a Triruthenium μ3-Borylene Complex with Benzonitrile: Formation of a μ3-η3-BCN Ring on a Cationic Ru3 Plane via Photo-Induced Intramolecular Borylene Transfer. Organometallics 2020;39(4):593-604. https://dx.doi.org/10.1021/acs.organomet.9b00831

Bader RFW. Atoms in Molecules A Quantum Theory. Oxford science publications. Clarendon Press; 1900. 438p. https://books.google.iq/books?id=up1pQgAACAAJ

Rampino S. Chemistry at the Frontier with Physics and Computer Science. Elsevier; 2022. Chap 14, The atom and the bond; p. 151-66. https://dx.doi.org/10.1016/b978-0-32-390865-8.00024-6

Wen L, Li G, Yang LM, Pan H, Ganz E. The structures, electronic properties, and chemical bonding of binary alloy boron–aluminum clusters series B4Aln0/−/+ (n = 1–5). Mater Today Commun. 2020;24(1):100914. https://dx.doi.org/10.1016/J.MTCOMM.2020.100914

van der Maelen JF, Ceroni M, Ruiz J. The X-ray constrained wavefunction of the [Mn(CO)4{(C6H5)2P-S-C(Br2)-P(C6H5)2}]Br complex: A theoretical and experimental study of dihalogen bonds and other noncovalent interactions. Acta. Crystallogr. B. Struct Sci Cryst Eng Mater. 2020;76(5): 802-814. https://dx.doi.org/10.1107/S2052520620009889

Malloum A, Conradie J. QTAIM analysis dataset for non-covalent interactions in furan clusters. Data Br. 2022;40(1):107766. https://dx.doi.org/10.1016/j.dib.2021.107766

Attia AS, Alfallous KA, El-Shahat MF. A novel quinoxalinedione-bicapped tri-ruthenium carbonyl cluster [Ru3(μ-H)2(CO)6(μ3-HDCQX)2]: synthesis, characterization, anticancer activity and theoretical investigation of Ru–Ru and Ru–Ligand bonding interactions. Polyhedron 2021;193(1):114889. https://dx.doi.org/10.1016/j.poly.2020.114889

Nagaoka M, Takao T, Suzuki H. Synthesis of a heterometallic trinuclear cluster containing ruthenium and cobalt and its reactivity with internal alkynes. Organometallics 2012;31(18):6547-54. https://dx.doi.org/10.1021/om300371g

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, program, Revision A.02. Gaussian, Inc. Wallingford 2016. https://gaussian.com/g09citation/

Hirva P, Haukka M, Jakonen M, Moreno MA. DFT tests for group 8 transition metal carbonyl complexes. J Mol Model. 2008;14(3):171-81.

Biegler-König F, Schönbohm J. AIM2000. J Comput Chem. 2002;22(1):545-559. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y .

Al-Ibadi MAM, Alkurbasy NE, Alhimidi SRH. The topological classification of the bonding in[(Cp’Ru)2 (Cp’Os)(μ3-N)2(μ-H)3] cluster. AIP Conf Proc. 2019;2144(1):20009. https://dx.doi.org/10.1063/1.5123066

Alhimidi SRH, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM Approach to Chemical Bonding in Triruthenium Carbonyl Cluster:[Ru3 (μ-H)(μ3-κ2-Haminox-N, N)(CO) 9]. J Phys. 2018;1032(1):12068.

Al-Ibadi MAM, Oraibi DT, Hasan AH. The ruthenium-ruthenium bonding in bridged ligand system: QTAIM study of [Ru3(μ3-κ2-MeimCh) (μ-CO) (CO)9] complex. AIP Conf Proc. 2019;2144(1):20008. https://dx.doi.org/10.1063/1.5123065

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999;110(13):6158.

Yang X, Chin RM, Hall MB. Protonating metal-metal bonds: Changing the metal-metal interaction from bonding, to nonbonding, and to antibonding. Polyhedron 2022;212(1):115585. https://dx.doi.org/10.1016/j.poly.2021.115585

Cesari C, Bortoluzzi M, Forti F, Gubbels L, Femoni C, Iapalucci MC, et al. 2-D Molecular Alloy Ru–M (M = Cu, Ag, and Au) Carbonyl Clusters: Synthesis, Molecular Structure, Catalysis, and Computational Studies. Inorg Chem Published online September. 2022;61(37):14726–14741. https://dx.doi.org/10.1021/ACS.INORGCHEM.2C02099

Ruiz J, Sol D, Garciá L, Mateo MA, Vivanco M, Van Der Maelen JF. Generation and Tunable Cyclization of Formamidinate Ligands in Carbonyl Complexes of Mn(I): An Experimental and Theoretical Study. Organometallics. 2019;38(4):916–925. https://dx.doi.org/10.1021/acs.organomet.8b00898

Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, et al. Electron-density investigation of Metal–Metal bonding in the dinuclear “Borylene” complex [Cp(CO)2Mn2(μ-BtBu)]. Angew Chem Int Ed Engl. 2008;47(23):4321–4325. https://dx.doi.org/10.1002/anie.200705257

Overgaard J, Clausen HF, Platts JA, Iversen BB. Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc. 2008;130(12):3834-43.

Domagała M, Lutyńska A, Palusiak M. Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge. J Phys Chem A. 2018;122(24):5484-92. https://dx.doi.org/10.1021/acs.jpca.8b03735

Prasad Kuntar S, Ghosh A, K. Ghanty T. Superstrong Chemical Bonding of Noble Gases with Oxidoboron (BO+) and Sulfidoboron (BS+). J Phys Chem A. 2022 126(43) 7888–7900. https://dx.doi.org/10.1021/acs.jpca.2c05554

Korabel’nikov D V, Zhuravlev YN. The nature of the chemical bond in oxyanionic crystals based on QTAIM topological analysis of electron densities. RSC Adv 2019;9(21):12020-12033. https://dx.doi.org/10.1039/c9ra01403a

Anil Kumar GN, Shruthi DL. The nature of the chemical bond in sodium tungstate based on ab initio, DFT and QTAIM topological analysis of electron density. Mater Today Proc Elsevier. 2021;44(8):3127-32. https://dx.doi.org/10.1016/j.matpr.2021.02.810

van der Maelen JF, Brugos J, García-Álvarez P, Cabeza JA. Two octahedral σ-borane metal (MnI and RuII) complexes containing a tripod κ3N,H,H-ligand: Synthesis, structural characterization, and theoretical topological study of the charge density. J Mol Struct. 2020;1201(127217):127217. https://dx.doi.org/10.1016/j.molstruc.2019.127217

F. Van der Maelen J. Topological Analysis of the Electron Density in the Carbonyl Complexes M(CO)8 (M = Ca, Sr, Ba). Organometallics 2019;39(1):132-41. https://dx.doi.org/10.1021/acs.organomet.9b00699

Gadre SR, Suresh CH, Mohan N, Kuznetsov ML. molecules Electrostatic Potential Topology for Probing Molecular Structure Bonding and Reactivity. Molecules 2021;26(11):3289. https://dx.doi.org/10.3390/molecules26113289

Van der Maelen JF, Cabeza JA. A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, Re). Theor Chem Acc. 2016;135(3):1-11. https://dx.doi.org/10.1007/s00214-016-1821-0

Maelen JF van der, García-granda S, Cabeza JA. Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters: [Os3(CO)12], [Os3(μ-H)2(CO)10], [Os3(μ-H)(μ-OH)(CO)10] and [Os3(μ-H)(μ-Cl)(CO)10]. Comput Theor Chem. 2011;968(1-3):55-63. https://dx.doi.org/10.1016/j.comptc.2011.05.003

Feliz M, Llusar R, Andrés J, Berski S, Silvi B. Topological analysis of the bonds in incomplete cuboidal [Mo 3 S 4] clusters. New J Chem. 2002;26(7):844-50.

Nishide T, Hayashi S. Intrinsic Dynamic and Static Nature of π···π Interactions in Fused Benzene-Type Helicenes and Dimers, Elucidated with QTAIM Dual Functional Analysis. J Nanomater. 2022;12(3):321. https://dx.doi.org/10.3390/NANO12030321

Al-Kirbasee NE, Alhimidi SRH, Al-Ibadi MAM. QTAIM study of the bonding in triosmium trihydride cluster [Os3(μ-H)3(μ3-É2-CC7H3(2-CH3)NS)(CO)8]. Baghdad Sci J. 2021;18(4):1279-85. https://dx.doi.org/10.21123/BSJ.2021.18.4.1279

Van der Maelen JF, Gutiérrez-Puebla E, Monge A, García-Granda S, Resa I, Carmona E, et al. Experimental and theoretical characterization of the Zn—Zn bond in [Zn2 (η5-C5Me5) 2]. Acta Crystallogr B. 2007;63(6):862-8.

Helal SR, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM Approach to Chemical Bonding in Triruthenium Carbonyl Cluster: [Ru3 (μ-H)(μ 3-κ 2-Haminox-N,N)(CO)9]. J Phys Conf Ser. 2018;1032(1):12068. https://dx.doi.org/10.1088/1742-6596/1032/1/012068

Isaac C, Wilson C, Burnage A, Miloserdov M, Mahon M, Macgregor S, et al. Experimental and Computational Studies of Ruthenium Complexes Bearing Z-Acceptor Aluminum-Based Phosphine Pincer Ligands Inorg Chem. 2022;61(50):20690–20698. https://dx.doi.org/10.1021/acs.inorgchem.2c03665

Mercero JM, Ugalde JM. Atomic Clusters with Unusual Structure, Bonding and Reactivity. 1st Ed. Chap 2, Elsevier. Electron delocalization in clusters; 2022. p. 19-39. https://dx.doi.org/10.1016/B978-0-12-822943-9.00013-9

Bartashevich E v., Mukhitdinova SE, Tsirelson VG. Bond orders and electron delocalization indices for S–N, S–C and S–S bonds in 1,2,3-dithiazole systems. Mendeleev Commun. 2021;31(5):680-3. https://dx.doi.org/10.1016/j.mencom.2021.09.029

Cabeza JA, Van Der Maelen JF, Garcia-Granda S. Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)2(μ3- MeImCH)(CO)9] (Me2im = l,3-dimethylimidazol-2-ylidene). Organometallics 2009;28(13):3666-72. https://dx.doi.org/10.1021/om9000617

Al-Ibadi MAM, Kzar KO. Theoretical study of Fe-Fe bonding in a series of iron carbonyl clusters [(µ-H)2Fe3(CO)9(µ3-As)Mn(CO)5], [Et4N] [(µ-H)2Fe3(CO)9(µ3-As)Fe(CO)4] and [Et4N][HAs{Fe2(CO)6(µ-CO) (µ-H)}{Fe(CO)4}] by QTAIM perspective. Egypt J Chem. 2020;63(8):2911-20. https://dx.doi.org/10.21608/ejchem.2020.21235.2267

Macchi P, Donghi D, Sironi A. The electron density of bridging hydrides observed via experimental and theoretical investigations on [Cr2(μ2-H)(Co) 10]-. J Am Chem Soc. 2005;127(47):16494-504. https://dx.doi.org/10.1021/ja055308a