A Theoretical Investigation of Chemical Bonding of a Heterometallic Trinuclear Cluster Containing Iridium and Ruthenium: [(Cp*Ir) (CpRu)2 (μ3-H) (μ-H)3] by QTAIM Approach

Main Article Content

Ahlam Hussein Hassan
Muhsen Abood Muhsen Al-Ibadi
https://orcid.org/0009-0006-5882-7483

Abstract

  Numerous integral and local electron density’s topological parameters of significant metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp* Ir) (Cp Ru)23-H) (μ-H)3]1 (Cp = η5 -C5Me5), (Cp* = η5 -C5Me4Et) were calculated and interpreted by using the quantum theory of atoms in molecules (QTAIM). The properties of bond critical points such as the delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density 2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible thanks to these results. In the core of the heterometallic tetrahydrido cluster, the Ru2IrH4 part, the calculations showed that there are no bond critical points (BCPs) or identical bond paths (BPs) between Ru-Ru and Ru-Ir. The distribution of electron densities is determined by the position of bridging hydride atoms coordinated to Ru-Ru and Ru-Ir, which significantly affects the bonds between these transition metal atoms. On the other hand, the results confirm that the cluster under study contains a 7c–11e bonding interaction delocalized over M3H4, as shown by the non-negligible delocalization index calculations. The small values for ρ(b) above zero, together with the small values, again above zero, for Laplacian 2ρ(b) and the small positive values for total energy density H(b), are shown by the Ru-H and Ir-H bonds in this cluster is typical for open-shell interactions. Also, the topological data for the bond interactions between Ir and Ru metal atoms with the C atoms of the cyclopentadienyl Cp ring ligands are similar. They show properties very identical to open-shell interactions in the QTAIM classification.

Article Details

How to Cite
1.
A Theoretical Investigation of Chemical Bonding of a Heterometallic Trinuclear Cluster Containing Iridium and Ruthenium: [(Cp*Ir) (CpRu)2 (μ3-H) (μ-H)3] by QTAIM Approach. Baghdad Sci.J [Internet]. 2024 Jan. 1 [cited 2024 Apr. 28];21(1):0107. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7945
Section
article

How to Cite

1.
A Theoretical Investigation of Chemical Bonding of a Heterometallic Trinuclear Cluster Containing Iridium and Ruthenium: [(Cp*Ir) (CpRu)2 (μ3-H) (μ-H)3] by QTAIM Approach. Baghdad Sci.J [Internet]. 2024 Jan. 1 [cited 2024 Apr. 28];21(1):0107. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7945

References

Zhang X. Computational insights into organic and organometallic catalysis. University of Oxford. 2019. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.799939.

Chipman JA, Berry JF. Paramagnetic Metal–Metal bonded heterometallic complexes. Chem Rev. 2020; 120(5): 2409–2447; https://doi.org/10.1021/acs.chemrev.9b00540.

Muhsen Al-Ibadi MA, Taha A, Hasan Duraid AH, Alkanabi T. A theoretical investigation on chemical bonding of the bridged hydride triruthenium cluster: [Ru3 (μ-H)(μ3-κ2-hamphox-N,N)(CO)9]. Baghdad Sci J. 2020; 17(2): 488-93. https://doi.org/10.21123/bsj.2020.17.2.0488

Chikamori H, Tahara A, Takao T. Transformation of a μ3-Benzyne ligand into phenol on a cationic triruthenium cluster supported by a μ3-Sulfido ligand. Organometallics. 2018; 38(2): 527-35. https://doi.org/10.1021/acs.organomet.8b00832

Takao T, Suzuki H, Shimogawa R. Syntheses and properties of triruthenium polyhydrido complexes composed of 1,2,4-tri-tert-butylcyclopentadienyl and p-Cymene ruthenium units. Organometallics. 2021; 40(9): 1303-13. https://doi.org/10.1021/acs.organomet.1c00094

Daniels C, Gi E, Atterberry B, Blome-Fernández R, Rossini A, Vela J. Phosphine ligand binding and catalytic activity of group 10–14 heterobimetallic complexes. Inorg Chem. 2022; 61(18): 6888-97. https://doi.org/10.1021/acs.inorgchem.2c00229

AL-Nafee, M. Metal-Metal bonding in poly-metallic systems. PhD thesis, University of Oxford, 2019. https://ora.ox.ac.uk/objects/uuid:95f6c115-e1de-40b3-8f0b-eb6ce93e78b0

Al-Ibadi MAM, Alkurbasy NE, Alhimidi SRH. The topological classification of the bonding in[(Cp’Ru)2 (Cp’Os)(μ3-N)2(μ-H)3] cluster. AIP Conf Proc. 2019; 2144(1): 20009. https://doi.org/10.1063/1.5123066.

Bader RFW. Atoms in molecules a quantum theory. Oxford science publications. Clarendon Press; 1900. 438p. https://books.google.iq/books?id=up1pQgAACAAJ

Al-Kirbasee NE, Alhimidi SRH, Al-Ibadi MAM. QTAIM study of the bonding in triosmium trihydride cluster [Os3(μ-H)3(μ3-É2-CC7H3(2-CH3)NS)(CO)8]. Baghdad Sci J. 2021; 18(4): 1279-85. https://doi.org/10.21123/BSJ.2021.18.4.1279.

Rampino S. Chemistry at the Frontier with Physics and Computer Science. Elsevier; 2022. Chap 14, The atom and the bond; p. 151-66. https://doi.org/10.1016/b978-0-32-390865-8.00024-6

Wen L, Li G, Yang LM, Pan H, Ganz E. The structures, electronic properties, and chemical bonding of binary alloy boron–aluminum clusters series B4Aln0/−/+ (n = 1–5). Mater Today Commun. 2020; 24(1): 100914. https://doi.org/10.1016/J.MTCOMM.2020.100914

Cheng X, Lei A, Mei TS, Xu HC, Xu K, Zeng C. Recent applications of homogeneous catalysis in electrochemical organic synthesis. CCS Chem. 2022; 4(4): 1120-52. https://doi.org/10.31635/ccschem.021.202101451.

Malloum A, Conradie J. QTAIM analysis dataset for non-covalent interactions in furan clusters. Data Br. 2022; 40(1): 107766. https://doi.org/10.1016/j.dib.2021.107766

van der Maelen JF, Ceroni M, Ruiz J. The X-ray constrained wavefunction of the [Mn(CO)4{(C6H5)2P-S-C(Br2)-P(C6H5)2}]Br complex: A theoretical and experimental study of dihalogen bonds and other noncovalent interactions Acta Crystallogr B Struct Sci Cryst Eng Mater. 2020; 76(5): 802-814. https://doi.org/10.1107/S2052520620009889

Attia AS, Alfallous KA, El-Shahat MF. A novel quinoxalinedione-bicapped tri-ruthenium carbonyl cluster [Ru3(μ-H)2(CO)6(μ3-HDCQX)2]: synthesis, characterization, anticancer activity and theoretical investigation of Ru–Ru and Ru–Ligand bonding interactions Polyhedron. 2021; 193(1): 114889. https://doi.org/10.1016/j.poly.2020.114889

Shima T, Sugimura Y, Suzuki H. Heterometallic trinuclear polyhydrido complexes containing ruthenium and a group 9 metal, [Cp*3Ru2M(μ3-H)(μ-H)3] (M = Ir or Rh; Cp* = η5-C5Me5): Synthesis, structure, and site selectivity in reactions with phosphines. Organometallics. 2009; 28(3): 871–881. https://doi.org/10.1021/om8010432.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, program, Revision A.02. Gaussian, Inc. Wallingford 2016. https://gaussian.com/g09citation/

Hirva P, Haukka M, Jakonen M, Moreno MA. DFT tests for group 8 transition metal carbonyl complexes. J Mol Model. 2008; 14(3): 171-81.

Alhimidi SRH, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM approach to chemical bonding in triruthenium carbonyl cluster:[Ru3 (μ-H)(μ3-κ2-Haminox-N, N)(CO) 9]. J Phys. 2018; 1032(1): 12068.

Biegler-König F, Schönbohm J. AIM2000. J Comput Chem. 2002; 22(1): 545-559. https://doi.org/10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y.

Huzinaga S, Klobukowski M. Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions. Chem Phys Lett. 1993; 212(3–4): 260–264. https://doi.org/10.1016/0009-2614(93)89323-A.

Al-Ibadi MAM, Oraibi DT, Hasan AH. The ruthenium-ruthenium bonding in bridged ligand system: QTAIM study of [Ru3(μ3-κ2-MeimCh) (μ-CO) (CO)9] complex. AIP Conf Proc. 2019; 2144(1): 20008. https://doi.org/10.1063/1.5123065

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys. 1999; 110(13): 6158.

Yang X, Chin RM, Hall MB. Protonating metal-metal bonds: Changing the metal-metal interaction from bonding, to nonbonding, and to antibonding. Polyhedron. 2022; 212(1): 115585. https://doi.org/10.1016/j.poly.2021.115585.

Cesari C, Bortoluzzi M, Forti F, Gubbels L, Femoni C, Iapalucci MC, et al. 2-D molecular alloy Ru–M (M = Cu, Ag, and Au) carbonyl clusters: synthesis, molecular structure, catalysis, and computational studies. Inorg Chem Published online September. 2022; 61(37): 14726–14741. https://doi.org/10.1021/ACS.INORGCHEM.2C02099

Ruiz J, Sol D, Garciá L, Mateo MA, Vivanco M, Van Der Maelen JF. Generation and tunable cyclization of formamidinate ligands in carbonyl complexes of Mn(I): An experimental and theoretical study. Organometallics. 2019; 38(4): 916–925. https://doi.org/10.1021/acs.organomet.8b00898

Flierler U, Burzler M, Leusser D, Henn J, Ott H, Braunschweig H, et al. Electron-density investigation of Metal–Metal bonding in the dinuclear “Borylene” complex [Cp(CO)2Mn2(μ-BtBu)]. Angew Chem Int Ed Engl. 2008; 47(23): 4321–4325. https://doi.org/10.1002/anie.200705257.

Overgaard J, Clausen HF, Platts JA, Iversen BB. Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc. 2008; 130(12): 3834-43.

Domagała M, Lutyńska A, Palusiak M. Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge. J Phys Chem A. 2018; 122(24): 5484-92. https://doi.org/10.1021/acs.jpca.8b03735.

Prasad Kuntar S, Ghosh A, K. Ghanty T. Superstrong chemical bonding of noble gases with oxidoboron (BO+) and sulfidoboron (BS+). J Phys Chem A. 2022; 126(43): 7888–7900. https://doi.org/10.1021/acs.jpca.2c05554.

Korabel’nikov D V, Zhuravlev YN. The nature of the chemical bond in oxyanionic crystals based on QTAIM topological analysis of electron densities. RSC Adv. 2019; 9(21): 12020-12033. https://doi.org/10.1039/c9ra01403a.

Anil Kumar GN, Shruthi DL. The nature of the chemical bond in sodium tungstate based on ab initio, DFT and QTAIM topological analysis of electron density. Mater Today Proc Elsevier. 2021; 44(8): 3127-32. https://doi.org/10.1016/j.matpr.2021.02.810.

van der Maelen JF, Brugos J, García-Álvarez P, Cabeza JA. Two octahedral σ-borane metal (MnI and RuII) complexes containing a tripod κ3N,H,H-ligand: Synthesis, structural characterization, and theoretical topological study of the charge density. J Mol Struct. 2020; 1201(127217): 127217. https://doi.org/10.1016/j.molstruc.2019.127217.

F. Van der Maelen J. Topological analysis of the electron density in the carbonyl complexes M(CO)8 (M = Ca, Sr, Ba). Organometallics. 2019; 39(1): 132-41. https://doi.org/10.1021/acs.organomet.9b00699.

Gadre SR, Suresh CH, Mohan N, Kuznetsov ML. Molecules electrostatic potential topology for probing molecular structure bonding and reactivity. Molecules. 2021; 26(11): 3289. https://doi.org/10.3390/molecules26113289.

Van der Maelen JF, Cabeza JA. A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, Re). Theor Chem Acc. 2016; 135(3): 1-11. https://doi.org/10.1007/s00214-016-1821-0.

Maelen JF van der, García-granda S, Cabeza JA. Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters: [Os3(CO)12], [Os3(μ-H)2(CO)10], [Os3(μ-H)(μ-OH)(CO)10] and [Os3(μ-H)(μ-Cl)(CO)10]. Comput Theor Chem. 2011; 968(1-3): 55-63. https://doi.org/10.1016/j.comptc.2011.05.003.

Feliz M, Llusar R, Andrés J, Berski S, Silvi B. Topological analysis of the bonds in incomplete cuboidal [Mo 3 S 4] clusters. New J Chem. 2002; 26(7): 844-50.

Nishide T, Hayashi S. Intrinsic dynamic and static nature of π···π interactions in fused benzene-type helicenes and dimers, elucidated with QTAIM dual functional analysis. J Nanomater. 2022; 12(3): 321. https://doi.org/10.3390/NANO12030321.

Van der Maelen JF, Gutiérrez-Puebla E, Monge A, García-Granda S, Resa I, Carmona E, et al. Experimental and theoretical characterization of the Zn—Zn bond in [Zn2 (η5-C5Me5) 2]. Acta Crystallogr B. 2007; 63(6): 862-8.

Helal SR, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM approach to chemical bonding in triruthenium carbonyl cluster: [Ru3 (μ-H)(μ 3-κ 2-Haminox-N,N)(CO)9]. J Phys Conf Ser. 2018; 1032(1): 12068. https://doi.org/10.1088/1742-6596/1032/1/012068.

Isaac C, Wilson C, Burnage A, Miloserdov M, Mahon M, Macgregor S, et al. Experimental and computational studies of ruthenium complexes bearing Z-Acceptor Aluminum-Based phosphine pincer ligands. Inorg Chem. 2022; 61(50): 20690–20698. https://doi.org/10.1021/acs.inorgchem.2c03665.

Bartashevich E v, Mukhitdinova SE, Tsirelson VG. Bond orders and electron delocalization indices for S–N, S–C and S–S bonds in 1,2,3-dithiazole systems. Mendeleev Commun. 2021; 31(5): 680-3. https://doi.org/10.1016/j.mencom.2021.09.029.

Cabeza JA, Van Der Maelen JF, Garcia-Granda S. Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)2(μ3- MeImCH)(CO)9] (Me2im = l,3-dimethylimidazol-2-ylidene). Organometallics. 2009; 28(13): 3666-72. https://doi.org/10.1021/om9000617.

Al-Ibadi MAM, Kzar KO. Theoretical study of Fe-Fe bonding in a series of iron carbonyl clusters [(µ-H)2Fe3(CO)9(µ3-As)Mn(CO)5], [Et4N] [(µ-H)2Fe3(CO)9(µ3-As)Fe(CO)4] and [Et4N][HAs{Fe2(CO)6(µ-CO) (µ-H)}{Fe(CO)4}] by QTAIM perspective. Egypt J Chem. 2020; 63(8): 2911-20. https://doi.org/10.21608/ejchem.2020.21235.2267.

Macchi P, Donghi D, Sironi A. The electron density of bridging hydrides observed via experimental and theoretical investigations on [Cr2(μ2-H)(Co) 10]-. J Am Chem Soc. 2005; 127(47): 16494-504. https://doi.org/10.1021/ja055308a

Similar Articles

You may also start an advanced similarity search for this article.