Plasma Electrolytic Oxidation of Nanocomposite Coatings on Ti-6Al-7Nb alloy for Biomedical Applications
Main Article Content
Abstract
The current study aims to useTi-6Al-7Nb alloy instead of Ti-6Al-4V alloy in medical applications. Due to the poor hardness and wear that cause loose of the implant. The surface of Ti-6Al-7Nb alloy has been coated with titanium and zirconia/titanium oxide nanocomposite coating by Plasma electrolytic oxidation (PEO) process. The results of the tests showed the possibility of deposition of ceramics coatings on the surface of Ti-6Al-7Nb alloy by using different times. The ceramics layer of titanium oxide (TiO2) is formed during coating porous, homogenous distribution, and low corrosion rate and wettability. A composite nano ceramic layer was obtained from nano ZrO2 with TiO2 observed with increased thickness layer and concentration with time compared TiO2 layer improved percentage (90.5%) during the corrosion test, Hank's solution showed a strong ability to act as a barrier to prevent the localized corrosion attack from many aggressive ions.
Received 18/10/2023
Revised 28/10/2023
Accepted 30/10/2023
Published Online First 20/04/2024
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Kaur M, Singh K. Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 2019; 102: 844-862. https://doi.org/10.1016/j.msec.2019.04.064.
Dos Santos A G. The Importance of Metallic Materials as Biomaterials. Adv Tissue Eng Regen Med . 2017; 3(1): 300–302. https://doi.org/10.15406/atroa.2017.03.00054.
Mozetič M. Surface Modification to Improve Properties of Materials. Materials. 2019; 12(3): 441. https://doi.org/10.3390/ma12030441.
Kaur S, Ghadirinejad K, Oskouei R H. An overview on the tribological performance of titanium alloys with surface modifications for biomedical applications. Lubricants. 2019; 7(8). https://doi.org/10.3390/lubricants7080065.
Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials. Int Mater Rev. 2021; 66(2): 114–139. https://doi.org/10.1080/09506608.2020.1735829.
Campoccia D, Montanaro L, Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomater. 2013; 34(34): 8533-8554. https://doi.org/10.1016/j.biomaterials.2013.07.089.
Thair L, Mudali U K, Bhuvaneswaran N, Nair K G M, Asokamani R, Raj B. Nitrogen ion implantation and in vitro corrosion behavior of as-cast Ti-6Al-7Nb alloy. Corros Sci. 2002; 44(11): 2439–2457. https://doi.org/10.1016/S0010-938X(02)00034-3.
Wu G, Li P, Feng H, Zhang X, Chu P.K. Engineering and functionalization of biomaterials via surface modification. J Mater Chem B. 2015; 3(10): 2024–2042. https://doi.org/10.1039/C4TB01934B.
Sidambe AT. Biocompatibility of advanced manufactured titanium implants-A review. Materials. 2014; 7(12): 8168–8188. https://doi.org/10.3390/ma7128168.
Kawano M, Takeda Y, Ogasawara K. Pathological Analysis of Metal Allergy to Metallic Materials. Advances in Metallic Biomaterials 2015: 305-321. https://doi.org/10.1007/978-3-662-46836-4_13.
Dos Santos G.A. The Importance of Metallic Materials as Biomaterials. Adv Tissue Eng Regen Med. 2017; 3(1): 300–302. https://doi.org/10.15406/atroa.2017.03.00054.
Shaikh S, Kedia S, Singh D, Subramanian M, Sinha S. Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance. J Laser Appl. 2019; 31(2). https://doi.org/10.2351/1.5081106.
Leng Y X, Chen J Y, Yang P, Sun H, Huang N. Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation. Surf Coatings Technol. 2003; 166(2–3): 176–182. https://doi.org/10.1016/S0257-8972(02)00780-6.
Chikarakara E. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V. Biomed Mater. 2015; 10(1). https://doi.org/10.1088/1748-6041/10/1/015007.
Kurup A, Dhatrak P, Khasnis N. Surface modification techniques of titanium and titanium alloys for biomedical dental applications: A review. Mater Today Proc. 2020; 39: 84–90.
Bosco R, Van Den Beucken J V, Leeuwenburgh S, Jansen J. Surface engineering for bone implants: A trend from passive to active surfaces. Coatings. 2012; 2(3): 95-119. https://doi.org/10.3390/coatings2030095.
Kulkarni M, Mazare A, Schmuki P, Iglič A. Titanium nanostructures for biomedical applications. Nanotechnology. 2015. 26(6). https://doi.org/10.1088/0957-4484/26/6/062002.
Zhang L C, Chen L Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv Eng Mater. 2019; 21(4): 1-29. https://doi.org/10.1002/adem.201801215.
Liu Xuanyong, Chu Paul K, Chuanxian D. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004; 47(3-4): 49-121. https://doi.org/10.1016/j.mser.2004.11.001.
Dorozhkin S V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater Sci Eng C. 2015; 55: 272-326. https://doi.org/10.1016/j.msec.2015.05.033.
Mohammed M T, Khan Z A, Siddiquee A N. Surface Modifications of Titanium Materials for developing Corrosion Behavior in Human Body Environment: A Review. Procedia Mater Sci. 2014; 6(Icmpc): 1610–1618. https://doi.org/10.1016/j.mspro.2014.07.144.
Liu X, Chu P, Ding C. Surface Modification of Titanium, Titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004; 47(3-4): 49-121. https://doi.org/10.1016/j.mser.2004.11.001.
Zaynab N, Rahseed A. Water Temperature Effect on Hardness and Flexural Strength of (PMMA/TiO2NPs) for Dental Applications. Baghdad Sci J. 2022; 19(4): 922-931. https://doi.org/10.21123/bsj.2022.19.4.0922.
Prakash C, Singh S, Singh R. Current Trends in Biomaterials and Bio-manufacturing. In Book: Biomanufacturing. Chap 1, 2019; p. 1-271. https://doi.org/10.1007/978-3-030-13951-3_1.
Michael A. Enhancing Corrosion Performance of Laser Modified NiTi Shape Memory Alloy: MSc Diss. Of Applied Science in Mechanical Engineering, University of Waterloo, Ontario, Canada. 2014.
Santos-Coquillat A, Gonzalez Tenorio R, Mohedano M, Martinez-Campos E, Arrabal R, Matykina E. Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Appl Surf Sci. 2018; 454: 157–172. https://doi.org/10.1016/j.apsusc.2018.04.267.
De Viteri V S. Structure, tribocorrosion and biocide characterization of Ca, P and I containing TiO2 coatings developed by plasma electrolytic oxidation. Appl Surf Sci. 2016; 367: 1-10. https://doi.org/10.1016/j.apsusc.2016.01.145
Xu L. Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment. Surf Coatings Technol. 2018; 342: 12–22. https://doi.org/10.1016/j.surfcoat.2018.02.044.
Campanelli L C, Duarte L T, da Silva P S C P, Bolfarini C. Fatigue behavior of modified surface of Ti-6Al-7Nb and CP-Ti by micro-arc oxidation. Mater Des. 2014; 64: 393–399. https://doi.org/10.1016/j.matdes.2014.07.074.
Zainab R, Abbas Ali S, Farqad A, Labeeb A, Suha Mohamed I. An Evaluation of the Activity of Prepared Zinc Nanoparticles with ExtractedAlfalfa Plant in the Treatment of Heavy Metals. Baghdad Sci J. 2022; 19(6): 1399-1409. https://doi.org/10.21123/bsj.2022.7313.
Cunha A. Multiscale femtosecond laser surface texturing of titanium and titanium alloys for dental and orthopaedic implants To cite this version: PhD theses. Université de Bordeaux. 2015; HAL Id : tel-01215468.
Wang C. The influence of alloy elements in Ti–6Al–4V and Ti–35Nb–2Ta–3Zr on the structure, morphology and properties of MAO coatings. Vacuum. 2018; 157: 229–236. https://doi.org/10.1016/j.vacuum.2018.08.054.
Alves A C. Effect of bio-functional MAO layers on the electrochemical behaviour of highly porous Ti. Surf Coatings Technol. 2020; 386125487. https://doi.org/10.1016/j.surfcoat.2020.125487.
Yang W, Xu D, Guo Q. Influence of electrolyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation. Surf Coatings Technol. 2018; 349: 522-528. https://doi.org/10.1016/j.surfcoat.2018.06.024.
Sedelnikova M B. Functionalization of pure titanium MAO coatings by surface modifications for biomedical applications. Surf Coatings Technol. 2020; 394: 125812. https://doi.org/10.1016/j.surfcoat.2020.125812.
Lara Rodriguez L, Sundaram P.A. Corrosion behavior of plasma electrolytically oxidized gamma titanium aluminide alloy in simulated body fluid. Mater Chem. Phys. 2016; 181: 67–77. https://doi.org/10.1016/j.matchemphys.2016.06.034.
Teng H P, Lin H Y, Huang Y H, Lu F H. Formation of strontium-substituted hydroxyapatite coatings on bulk Ti and TiN-coated substrates by plasma electrolytic oxidation. Surf Coatings Technol. 2018; 350: 1112-1119. https://doi.org/10.1016/j.surfcoat.2018.02.017.
Eliaz N. Corrosion of metallic biomaterials: A review. Materials. 2019; 12(3). https://doi.org/10.3390/ma12030407.
Metikoš-Huković M, Kwokal A, Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomater. 2003; 24(21): 3765-3775. https://doi.org/10.1016/S0142-9612(03)00252-7.
Khalaf H,Abdulhamied Z, Dawod A. Effect of surface modification of Si wafers on solar cell efficiency ZnO/P-Si thin films prepared by plasma sputtering. IOP Conference Series: Mater Sci Eng. 2019; 571(1). https://doi.org/10.1088/1757-899X/571/1/012115.