Synthesis, Characterisation and Biological Activity of New Co, Ni, Zn and Cd Polymeric Complexes Derived from Dithiocarbamate Ligand

Main Article Content

Riyadh M. Ahmed
https://orcid.org/0000-0002-6536-9680
Sarah S. Abdul Rahman
Dhefaf H. Badri
Khawla M. Sultan
Ismaeel Y. Majeed
Ghada M. Kamil

Abstract

Synthesis of a new class of Schiff-base ligand with a tetrazole moiety to form polymeric metal complexes with CoII, NiII, ZnII, and CdII ions has been demonstrated. The ligand was synthesised by a multi-steps by treating 5-amino-2-chlorobenzonitrile and cyclohexane -1,3-dione, the 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) was obtained. The precursor (M) was prepared  from the reaction 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) with NaN3 to obtained (1E,3E)-N1,N3-bis(4-chloro-3-(1H-tetrazol-5-yl)phenyl)cyclohexane-1,3-diimine (N). By reacting the precursor (M) with CS2/KOH, the required ligand was synthesised. Co (II), Ni (II), Zn (II), Cd (II) ions produce polymeric metal complexes with the formula [M(L)]n when they react with the ligand (L). These complexes were synthesised using the same methods. The geometrical structure of ligand and their polymeric complexes were determined using FTIR, 1H, 13C-NMR, electronic spectroscopy, ESMS, magnetic susceptibility, metal and chloride contents, micro elemental analysis and conductance. From the results ,we conclude that the L-complexes demonstrate the production of four-coordinate complexes with tetrahedral geometry for Co(II), Zn(II), and Cd(II), and square planer geometry for Ni (II). We examined the antibacterial activity of both ligand and complexes with two types of bacteria positive (Bacillus stubtili and Staphylococcus aureus ) and negative (Escherichia coli and Pseudomonas aeruginosa ) with concentration 10-2.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Ahmed RM, Rahman SSA, Badri DH, Sultan KM, Majeed IY, Kamil GM. Synthesis, Characterisation and Biological Activity of New Co, Ni, Zn and Cd Polymeric Complexes Derived from Dithiocarbamate Ligand. Baghdad Sci.J [Internet]. 2024 Feb. 1 [cited 2024 Feb. 22];21(2):0384. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8038
Section
article

References

Senthil KB, Senbagam D, Murugan K, Selvam K,Rajesh S, Anbarasu K. Syntheses, physicochemical characterization, antibacterial studies on potassium morpholine dithiocarbamate nickel (II), copper (II) metal complexes and their ligands. Heliyon. 2019; 5(5): 1687. https://doi.org/10.1016/j.heliyon.2019.e01687.

Qing Y, Kayode O, Fartisincha PA, Peter AA, Obinna MA, Enrico M. Assessment of physiological and electrochemical effects of a repurposed zinc dithiocarbamate complex on Acinetobacter baumannii biofilms. Sci Rep. 2022; 12: 11701. https://doi.org/10.1038/s41598-022-16047-z

Eswari S, Selvaganapathi P, Thirumaranand S, Samuele C. Effect of solvent used for crystallization on structure: Synthesis andcharacterization of bis(N,N-di(4-fluorobenzyl)dithiocarbamato-S,S′)M(II)(M = Cd, Hg) and usage as precursor for CdS nanophotocatalyst. Polyhedron. 2021; 206: 115330. https://doi.org/10.1016/j.poly.2021.115330 .

Tanzimjahan AS, Jerry OA, Damian C O. The structural chemistry of zinc(II) and nickel(II) dithiocarbamate complexes. Open Chem. 2021; 19: 974–986. https://doi.org/10.1515/chem-2021-0080 .

Salih HA, Synthesis, characterization and biological activity of some nickel(II) mixed

ligands complexes of dithiocarbamate and 1,10‐phenanthroline. Eur J Chem. 2017; 8 (4): 367‐370. http://dx.doi.org/10.5155/eurjchem.8.4.367-370.1636 .

Felicia FB, Omolola EF, Damian CO. Synthesis, characterization, and cyclic voltammetry of nickel sulphide and nickel oxide nanoparticles obtained from Ni(II) dithiocarbamate. Mater Sci Semicond Process. 2021; 121: 105315. https://doi.org/10.1016/j.mssp.2020.105315 .

Viktor Z, Maryna S, Volodymyr N, Mykhailo V. Synthesis and Study of Antimicrobial Activity of 2-Dithiocarbamate-N-(9,10-Dioxo-9,10-Dihydroanthracenyl)Acetamides, Biointerface Res Appl Chem. 2021; 11(1): 7725 – 7734. https://doi.org/10.33263/BRIAC111.77257734 .

Anna R, Nathan H, Graeme H. Synthesis of ternary sulfide nanomaterials using dithiocarbamate complexes as single source precursors, Nanoscale Adv. 2019; 1: 3056–3066. https://doi.org/10.1039/c9na00275h

Christian KA. Therapeutic potential of dithiocarbamate supported gold compounds, RSC Chem. 2020; 10: 2975–2988. https://doi.org/10.1039/c9ra09682e .

Timothy OA, Titilope TA, Riadh M, Damian CO. The Versatility in the Applications of Dithiocarbamates. Int J Mol Sci. 2022; 23: 1317. https://doi.org/10.3390/ijms23031317.

Graeme H., Damian CO. Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science. Biosciences and Beyond. Inorganics. 2021; 9: 70. https://doi.org/10.3390/inorganics9090070 .

Frazier KR, Moore JA, Long TE. Antibacterial activity of disulfiram and its metabolites. J Pure Appl Microbiol, 2018; 126: 79-86. https://doi.org/10.1111/jam.14094 .

Thandra DR, Nishtla VB, Alli KR. Synthesis and Spectral, Electrochemical, Protein-Docking and Biological Studies of Fluoxetine Dithiocarbamate and Its Bivalent Metal Complexes. S Afr J Chem. 2021; 4(4): 777-789.‏ https://doi.org/10.1007/s42250-021-00283-3

Ghufran SO, Kaiss RI, Mohammad FM. Metal Complexes Derived from Dithiocarbamate Ligand: Formation, Spectral Characterization and Biological activity, Sys Rev Pharm. 2020; 11(6): 360-368. https://doi.org/ 10.31838/srp.2020.6.57

Jerry OA, Damian CO. Organotin(IV) Dithiocarbamate Complexes: Chemistry and Biological Activity. Molecules. 2018; 23: 2571. https://doi.org/10.3390/molecules23102571.

Petra M, Alessandra B, Lorenza M, Licia U, Stefano C, Giuseppe C, et al. Synthesis and Characterization of Manganese Dithiocarbamate Complexes: New Evidence of Dioxygen Activation. Molecules. 2021; 26: 5954. https://doi.org/10.3390/molecules26195954.

Jerry OA, Gbemisola MS, Lukman OO, Adewale OF, Mervin M, Nicole RSS, et al. dithiocarbamate complexes, Heliyon. 2021; 7(8): e07693. https://doi.org/10.1016/j.heliyon.2021.e07693.

Elisa A, Diego AR, Mariano L, Laura G. Selective Anticancer and Antimicrobial Metallodrugs Based on Gold(III) Dithiocarbamate Complexes. Biomedicines. 2021; 9: 1775. https://doi.org/10.3390/biomedicines9121775

Alya'a JA. Metal Complexes of Dithiocarbamate Derivatives and its Biological Activity, Asian J Chem. 2018; 30 (12): 2595-2602.https://doi.org/ 10.14233/ajchem.2018.21545

Segun, DO, Bernard O, Chunderika M. Synthesis and structural studies of nickel(II)- and copper(II)-N,N0diarylformamidine dithiocarbamate complexes as antimicrobial and antioxidant agents. Polyhedron. 2019; 170: 712–722. https://doi.org/10.1016/j.poly.2019.06.038

Yee ST, Chien IY, Edward RTT, Peter JH. Dithiocarbamate Complexes of Platinum Group Metals:Structural Aspects and Applications. Inorganics. 2021; 9: 60. https://doi.org/10.3390/inorganics9080060

Jerry OA, Damian CO. The mechanisms of action involving dithiocarbamate complexes inbiological systems. Inorganica Chim Acta. 2020; 511: 119809. https://doi.org/10.1016/j.ica.2020.119809

Thobani C, Ph.D. Thesis. Ni(II) and Pb(II) Dithiocarbamate Complexesas Precursors for the Synthesis of HDA-capped NiS and PbS Nano-particles. University of Fort Hare. South Africa 2015.

Mukesh, CS, Dharm VK, Smita S. Benzimidazoles derivatives with (2-{6-Chloro-5-nitro-1-[2-(1H-tetrazol-5-yl) biphenyl4-ylmethyl] 1H-benzoimidazol-2-yl}-phenyl)-(substituted-benzylidene)-amine with potential angiotensin II receptor antagonists as antihypertensive activity. Int J Drug Deli. 2010; 2: 228-237. https://doi.org/10.5138/ijdd.2010.0975.0215.02033

RiyadhMA, Taki. AH, Amed. TN, Mohammed JA, Herman P. Formation of polymeric assemblies of six-coordinate metal complexes with mixed bridges of dicarboxylato-azido moieties. Complex Metals. 2014; 1(1): 38-45. https://doi.org/10.1080/2164232X.2014.883290

Riyadh MA, Enaam IY, Hasan. AH, Mohammed JA. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity. Sci. World J. 2013: 1-7. ID 289805; https://doi.org/10.1155/2013/289805.

Ruaa MA. Synthesis and Characterization of Some Heterocyclic Compounds (Oxazepine, Tetrazole) Derived from Schiff Bases. Iraqi J Med Sci. 2012; 15(4): 60-67. https://doi.org/10.22401/JNUS.15.4.07

Zahraa. AJ. Preparation and Characterization of Cu (II), Mn(II) and Zn(II)complexes with new sulfamethoxazole Compounds. Baghdad Sci J. 2017; 14(3): 575-581. http://dx.doi.org/10.21123/bsj.2017.14.3.0575.

Ferjani H, Thana YY. Characterization Studies on Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) Complexes with New Ligands Derived from Anthraquinone Substance. Iraqi J Sci . 2022;63(7): 2804-2813.https://doi.org/10.24996/ijs.2022.63.7.5

Fudo Z, Peter AA, Ayodele TO. Synthesis, Characterization, and Electrochemical Activities of Ruthenium(II) Bipyridyl-Dithiocarbamate Complexes. Int J Photoenergy. 2022; 67: 1706.‏ https://doi.org/10.1155/2022/6875515

Shanan Z J, Majed MD, Ali HM. Effect of the Concentration of Copper on the Properties of Copper Sulfide Nanostructure. Baghdad Sci J. 2022; 19(1): 0225. https://doi.org/10.21123/bsj.2022.19.1.0225.

Ravi PS, Anupam S, Lal BP, Kunal S, Sumit KH. Nickel (II), Copper (II), and Zinc (II) Complexes of N-bis(4-methoxybenzyl) Dithiocarbamate: Synthesis, Characterization Studies, and Evaluation of Antitumor Activity. J Mol Struct. 2022; 1264: 33295. https://doi.org/10.1016/j.molstruc.2022.133295.

Mohammed JA, Ahlam. JAG, Ahmed. JA. Synthesis and structural studies of new Mannich base ligands and their metal complexes. Trans Met Chem. 2008; 33: 925-930 https://doi.org/10.1007/s11243-008-9134-3

Mohammed JA, Husam HA, Riyadh MA. New metal complexes of N2S2 tetradentate ligands: Synthesis and spectral studies. Inorg Chim Acta. 2010; 363(6): 1301-1305.https://doi.org/10.1016/j.ica.2009.11.040 .

35.Saul MM, Ajay KM, Bhekie BM, Patrik BN, Mike FD, ElvisFK. Spectral, thermal and in vitro antimicrobial studies of cyclohexylamine-N-dithiocarbamate transition metal complexes. Spectrochim Acta, A.2010; 77(3): 579-587. https://doi.org/10.1016/j.saa.2010.06.002.

Himadri PG, Anmol S, Pranjit B, Diganta C. A New Potential ONO Schiff-Base Ligand and its Cu (II), Zn (II) and Cd (II) Complexes: Synthesis, Structural Elucidation, Theoretical and Bioactivity Studies. Inorg Chem Commun. 2022: 110153.‏https://doi.org/10.1016/j.inoche.2022.11015353

Doaa MB, Usama IA, Mohammed MG, Adel MY, Gaber MA. Fluorescence, cyclic voltammetric, computational, and spectroscopic studies of Mn (II), Co (II), Pd (II), Zn (II) and Cd (II) complexes of salen ligand and their biological applications. J Mol Struct. 2023; 1271(5): 134142. ‏https://doi.org/10.1016/j.molstruc.2022.134142

Ahmed SA, Salih SM, Hasan EA. Synthesis, Characterization, DFT, and Antibacterial Evaluation of Some Complexes of Co (II), Ni (II), Cu (II), Zn (II), and Cd (II) with Schiff Ligand. Egypt J Chem. 2022; 65(1): 1-2. https://doi.org/10.21608/ejchem.2021.80166.3963

Amer AA, Karem LK. Biological Evaluation and Antioxidant Studies of Nio, Pdo and Pt Nanoparticles Synthesized from a New Schiff Base Complexes. Ibn al-Haitham J Pure Appl Sci.. 2022; 35(4). https://doi.org/10.30526/35.4.2864.

Ran VS, Rakhi. D, Suresh CJ. Synthetic, magnetic, spectral, antimicrobial and antifertility studies of dioxomolybdenum (VI) unsymmetrical imine complexes having a N ∩ N donor system. Trans Met Chem. 2004; 29(1): 70– 74. https://doi.org/10.1023/B:TMCH.0000014487.86754.93 .