Polyaniline Nano Films Synthesis in One Step via Chemical Oxidative Polymerization

Main Article Content

Amal Shakir Abbood
Ibraheem Jaleel Ibraheem


Polyaniline films were successfully synthesized in this study using an oxidative polymerization method at temperatures ranging from 0 to 4 ° C. Polyaniline films were deposited using a single step of chemical oxidative polymerization rather than electrochemical polymerization. The polyaniline was examined using FTIR, XRD, SEM, AFM, and Four Point Probe. This result demonstrates that polyaniline synthesized using this method has a uniform morphology, small size (17 to 40) nm, high crystallinity, and high conductivity (9.42 s/cm).


Download data is not yet available.

Article Details

How to Cite
Abbood AS, Ibraheem IJ. Polyaniline Nano Films Synthesis in One Step via Chemical Oxidative Polymerization. Baghdad Sci.J [Internet]. 2024 Feb. 1 [cited 2024 Feb. 22];21(2):0401. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8057


Abel SB, Yslas EI, Rivarola CR, Barbero CA. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect. Nanotechnol. 2018 Feb 9;29(12):125604. https://doi.org/10.1088/1361-6528/aaa99a.

Othman SA. Conjugated Polymer of Biosensor using Langmuir-Blodgett Technique-A Review. J. Phys: Conference Series 2022 ;2169(1):012030). https://doi.org/10.1088/1742-6596/2169/1/012030

Cho S, Lee JS, Joo H. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications. Polymers. 2019 Nov 29;11(12):1965. https://doi.org/10.3390/polym11121965

Qian C, Li Y, Chen C, Han L, Han Q, Liu L, Lu Z. A stretchable and conductive design based on multi-responsive hydrogel for self-sensing actuators. Chem Eng J. 2023 Feb 15; 454:140263. https://doi.org/10.1016/j.cej.2022.140263.

Das P, Deoghare AB, Maity SR. Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram Int. 2022 Apr 15;48(8):11031-42. https://doi.org/10.1016/j.ceramint.2021.12.323

Luangaramvej P, Poungsripong P, Dubas ST. Synthesis of Janus polyaniline–polyelectrolyte complex membrane via in situ confined polymerization. Polym Int. 2022 Jan;71(1):139-45. https://doi.org/10.1002/pi.6294

Guan HS, Song WZ, Huang LP, Liu Z, Zhang J, Ramakrishna S, et al. Artificial blood vessel biofuel cell for self-powered blood glucose monitoring. Nanotechnol. 2021 Oct 22;33(2):025404. https://doi.org/10.1088/1361-6528/ac2d47

Faraco TA, de Lima Fontes M, Paschoalin RT, Claro AM, Gonçalves IS, Cavicchioli M, de Farias RL, Cremona M, Ribeiro SJ, da Silva Barud H, Legnani C. Review of Bacterial Nanocellulose as Suitable Substrate for Conformable and Flexible Organic Light-Emitting Diodes. Polymers. 2023 Jan;15(3):479. https://doi.org/10.3390/polym15030479.

Kumar AM, Jose J, Hussein MA. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: Feasible reinforcement in epoxy coatings on mild steel for corrosion protection. Prog Org Coat. 2022 Feb 1; 163:106678. https://doi.org/10.1016/j.porgcoat.2021.106678

Mohseni HR, Dehghanipour M, Dehghan N, Tamaddon F, Ahmadi M, Sabet M, et al. Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol Energy. 2021 Jan 1; 213:59-66. https://doi.org/10.1016/j.solener.2020.11.017

Kim DI, Lee JW, Jeong RH, Boo JH. A high‐efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Sci Rep. 2022 Jan 13;12(1):1-0. https://doi.org/10.1038/s41598-021-04547-3

Zhang Y, Xu L, Jiang H, Liu Y, Meng C. Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. J Colloid Interface Sci. 2021 Dec 1; 603:641-50. https://doi.org/10.1016/j.jcis.2021.06.141

Mello HJ, Junior BB, Mulato M. Polyaniline-based field effect transistor for DNA/RNA biomarker sensing: Comparison to electrochemical impedance and inorganic layer. Sens Actuators A Phys 2021 Feb 1; 318:112481. https://doi.org/10.1016/j.sna.2020.112481

Namsheer K, Rout CS. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11(10):5659-97. https://doi.org/10.1039/D0RA07800J

Al-Zohbi F. A Review of Tailoring Polyaniline Ionic Liquids for Long Cycle-Stable Supercapacitors with High Capacitance. J. Chem. Rev. 2023;5(2):143-58. https://doi.org/10.22034/JCR.380607.1206.

Bubniene US, Ratautaite V, Ramanavicius A, Bucinskas V. Conducting Polymers for the Design of Tactile Sensors. Polymers. 2022 Jul 23;14(15):2984. https://doi.org/10.3390/polym14152984.

Fedorko P, Trznadel M, Pron A, Djurado D, Planès J, Travers JP. New analytical approach to the insulator–metal transition in conductive polyaniline. Synth Met. 2010 Aug 1;160(15-16):1668-71. https://doi.org/10.1016/j.synthmet.2010.05.038

Pron A, Rannou P. Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog Polym Sci. 2002 Feb 1;27(1):135-90. https://doi.org/10.1016/S0079-6700(01)00043-0

Hasoon SA, Abdul-Hadi SA. Optical, structural and electrical properties of electrochemical synthesis of thin film of polyaniline. Baghdad Sci.J. 2018;15(1). http://dx.doi.org/10.21123/bsj.2018.15.1.0073

Boudjelida S, Djellali S, Ferkous H, Benguerba Y, Chikouche I, Carraro M. Physicochemical Properties and Atomic-Scale Interactions in Polyaniline (Emeraldine Base)/Starch Bio-Based Composites: Experimental and Computational Investigations. Polymers. 2022 Apr 7;14(8):1505. https://doi.org/10.3390/polym14081505.

Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers. 2021 Jun 18;13(12):2003. https://doi.org/10.3390/polym13122003

Sangamesha MA, Pushpalatha K, Shekar GL. Synthesis and characterization of conducting polyaniline/copper selenide nanocomposites. Indian J. Adv. Chem. Sci. 2014;2(3):223-7. ID:41704482.

Pal R, Goyal SL, Rawal I, Gupta AK. Tailoring of EMI shielding properties of polyaniline with MWCNTs embedment in X-band (8.2–12.4 GHz). J. Phys. Chem. Solids. 2022 Oct 1;169:110867. https://doi.org/10.1016/j.jpcs.2022.110867.

Qasim KF, Mousa MA. Electrical and dielectric properties of self-assembled polyaniline on barium sulphate surface. Egypt. J. Pet.. 2021 Dec 1;30(4):9-19. https://doi.org/10.1016/j.ejpe.2021.09.001

Alipanah N, Dehghani A, Abdolmaleki M, Bahlakeh G, Ramezanzadeh B. Designing environmentally-friendly pH-responsive self-redox polyaniline grafted graphene oxide nano-platform decorated by zeolite imidazole ZIF-9 MOF for achieving smart functional epoxy-based anti-corrosion coating. J. Environ. Chem. Eng. 2023 Feb 1;11(1):109048. https://doi.org/10.1016/j.jece.2022.109048.

Wu K, Gui T, Dong J, Luo J, Liu R. Synthesis of robust polyaniline microcapsules via UV-initiated emulsion polymerization for self-healing and anti-corrosion coating. Prog Org Coat. 2022 Jan 1;162:106592. https://doi.org/10.1016/j.porgcoat.2021.106592

Thanasamy D, Jesuraj D, Avadhanam V, Chinnadurai K, Kannan SK. Microstructural effect of various polyaniline-carbon nanotube core-shell nanocomposites on electrochemical supercapacitor electrode performance. J Energy Storage. 2022 Sep 1; 53:105087. https://doi.org/10.1016/j.est.2022.105087

Fu F, Wang H, Yang D, Qiu X, Li Z, Qin Y. Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors. J Colloid Interface Sci. 2022 Jul 1; 617:694-703. https://doi.org/10.1016/j.jcis.2022.03.023

Shen Y, Zheng L. Polyaniline-poly (methylene blue) nano-rod composites as an electrochemical sensor for sensitive determination of ascorbic acid. Int. J. Electrochem. Sci. 2023 Jan 1;18(1):6-12. https://doi.org/10.1016/j.ijoes.2023.01.007

Solonaru AM, Asandulesa M, Honciuc A. Homologous Series of Polyaniline Derivatives Block Copolymers with Amphiphilic and Semiconducting Properties. Polymers. 2022 May 25;14(11):2149. https://doi.org/10.3390/polym14112149.

Wang R, Jing Y. The effect of inorganic salt on the morphology and nucleation of polyaniline nanofibers synthesized via self-assembly. Des. Monomers Polym. 2023 Dec 31;26(1):45-53. https://doi.org/10.1080/15685551.2023.2166727.

Mahinnezhad S, Izquierdo R, Shih A. Fully Printed pH Sensor based on Polyaniline/Graphite Nanocomposites. J. ElectroChem. Soc. 2023 Jan 24. https://doi.org/10.1149/1945-7111/acb5c3.

Gamal A, Shaban M, BinSabt M, Moussa M, Ahmed AM, Rabia M, et al. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. Nanomaterials. 2022 Feb 28;12(5):817. https://doi.org/10.3390/nano12050817

Abbood A. Synthesis of C60 Nanotube from Pyrolysis of Plastic Waste (Polypropylene) with Catalyst. Baghdad Sci.J. 2020 Jun 21;17(2 (SI)):0624-. https://doi.org/10.21123/bsj.2020.17.2(SI).0624.