Numerical Solutions of Linear Abel Integral Equations Via Boubaker Polynomials Method

Main Article Content

Jalil Talab Abdullah
https://orcid.org/0000-0002-6847-3635
Haleema Swaidan Ali
Waleeda Swaidan Ali

Abstract

In this article, a numerical method based on Boubaker polynomials (BPs) was presented to solve the Linear Abel integral (LAI) Eqs of first and second types. The matrices were used to form the (LAI) Eq  into a system of linear Eqs. To get Boubaker parameters, solve this system of Eqs using the Guess elimination method. To explain the results of this method, four examples have been provided and compared with the results of many methods mentioned in previous research. MATLAB R2018b program was used to perform all calculations and graphs. 

Article Details

How to Cite
1.
Numerical Solutions of Linear Abel Integral Equations Via Boubaker Polynomials Method. Baghdad Sci.J [Internet]. 2024 May 1 [cited 2024 Sep. 8];21(5):1617. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8167
Section
article

How to Cite

1.
Numerical Solutions of Linear Abel Integral Equations Via Boubaker Polynomials Method. Baghdad Sci.J [Internet]. 2024 May 1 [cited 2024 Sep. 8];21(5):1617. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8167

References

Wazwaz A-M. Linear and Nonlinear Integral Equations: Methods and Applications. Heidelberg Dordrecht London New-York: Springer; 638 p. 2011.

Ali MR, Mousa MM, Ma W-X. Solution of Nonlinear Volterra Integral Equations with Weakly Singular Kernel by Using the HOBW Method. Adv Math Phys. 2019‏; 2019: 1-10. https://doi.org/10.1155/2019/1705651

Vanani SK, Soleymani F. Tau approximate solution of weakly singular Volterra integral equations. Math Comput Model. 2013; 57(3-4): 494-502. https://doi.org/10.1016/j.mcm.2012.07.004

Bairwa R, Kumar A, Kumar D. An Efficient Computation Approach for Abel’s Integral Equations of the Second Kind. Sci Technol Asia. 2020; 25(1): 85-94. https://doi.org/10.14456/scitechasia.2020.9

Zarei E, Noeiaghdam S. Solving generalized Abel’s integral equations of the first and second kinds via Taylor-collocation method. . arXiv preprint arXiv 2018 Apr 231804.08571. https://doi.org/10.48550/arXiv.1804.08571

Maurya R, Devi V, Srivastava N, Singh V. An efficient and stable Lagrangian matrix approach to Abel integral and integro differential equations. Appl. Math. Comput. 2020; 374: 1-30. https://doi.org/10.1016/j.amc.2019.125005

Sakran MRA. Numerical solutions of integral and integro-differential equations using Chebyshev polynomials of the third kind. Appl Math Comput. 2019; 351: 66-82. https://doi.org/10.54287/gujsa.1093536

Abdullah JT. Approximate Numerical Solutions for Linear Volterra Integral Equations Using Touchard Polynomials. Baghdad Sci. J. 2020; 17(4):1241-1249. https://doi.org/10.21123/bsj.2020.17.4.1241

Daşcioğlu A, Salinan S. Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations. Math. 2019; 7(1): 1-10. https://doi.org/10.3390/math7010059

Hamdan S, Qatanani N, Daraghmeh A. Numerical Techniques for Solving Linear Volterra Fractional Integral Equation. J Appl Math. 2019; 2019(1): 1-9. https://doi.org/10.1155/2019/5678103

Mundewadi RA, Kumbinarasaiah S. Numerical Solution of Abel s Integral Equations using Hermite Wavelet. Appl. Math nonlinear Sci. 2019; 4(2): 395-406. https://doi.org/10.2478/AMNS.2019.2.00037

Li C, Clarkson K. Babenko's approach to Abel's integral equations. Math. 2018; 6(3): 1-15. https://doi.org/10.3390/math6030032

Li C, Li C, Clarkson K. Several Results of Fractional Differential and Integral Equations in distribution. Math. 2018; 6(6): 1-19. https://doi.org/10.3390/math6060097

Zhang L, Huang J, Pan Y, Wen X. A Mechanical Quadrature Method for Solving Delay Volterra Integral Equation with Weakly Singular Kernels. Complexity. 2019; 2019: 1-12. https://doi.org/10.1155/2019/4813802

Ouda EH. An Approximate Solution of some Variational Problems Using Boubaker Polynomials. Baghdad Sci J. 2018; 15(1):106-109. https://doi.org/10.21123/bsj.2018.15.1.0106

Ouda EH, A. New Approach for Solving Optimal Control Problems Using Normalized Boubaker Polynomials. Emirates J Eng Re. 2018; 23(4): 33-38.

Ahmed IN, Ouda EH. An Iterative Method for Solving Quadratic Optimal Control Problem Using Scaling Boubaker Polynomials.Open Sci J. 2020; 5(2):1-10. DOI: https://doi.org/10.23954/osj.v5i2.2538

Salih Yalcınbas S, Akkaya T. A numerical approach for solving linear integro-differential-difference equations with Boubaker polynomial bases. Ain Shams Eng J. 2012; 3(2): 153-161. https://doi.org/10.1016/j.asej.2012.02.004

Abdullah, J. T, Sweedan, B. N. and Abdllrazak, B.T, Numerical solutions of Abel integral equations via Touchard and Laguerre polynomials. IJNAA. 2021; 12(2): 1599-1609.

Abdullah, J. T, Ali, H. S, Laguerre and Touchard Polynomials for Linear Volterra Integral and Integro Differential Equations. Phys. Conf. Ser. 2020; 1591(1): 1-17

Abdelkawy MA, Ezz-Eldien SS, Amin AZM. A Jacobi Spectral Collocation Scheme for Solving Abel’s Integral Equations. Prog Fract Differ Appl. 2015;1:187-200. https://doi.org/10.12785/pfda/010304

Pandey RK, Singh OP, Singh VK. Efficient Algorithms to Solve Singular Integral Equations of Abel Type. Comput. Math Appl. 2009; 57: 664-676. https://doi.org/10.1016/j.camwa.2008.10.085

Singh KK, Pandey RK, Mandal BN, Dubey N. An Analytical Method for Solving Integral Equations of Abel Type. Procedia Eng. 2012; 38: 2726-2738. https://doi.org/10.1016/j.proeng.2012.06.319

Similar Articles

You may also start an advanced similarity search for this article.