Conductometric and Computational Study of Chloramphenicol at Different Solvents and Temperatures

Main Article Content

Amel G. Abed

Abstract

In the present work, the electrical conductivity of chloramphenicol was measured in water and methanol at different temperature degrees  293-313 K. The parameters of conductivity equivalent conductance at infinite dilution ( Λ0), the association constant (KA) and distance parameter (R) were all recorded by using Lee-Wheaton equation and the thermodynamic parameters (ΔH, ΔG, and ΔS) were calculated as well. The behavior of a compound can be predicted through computational calculations; taking 2,2-dichloro-N-[(1R,2S)-1,3-dihydroxy-1-(4-nitrophenyl) propan-2-yl] acetamide, for example. There is an abundance of theoretical information available about how this compound behaves in different solvents, such as water and methanol. The secret lies in analyzing the compound's HOMO and LUMO energies, which can be determined through advanced computational calculations using methods like AM1, PM3, and HF. The potential of the compound was different when changing the solvent and this is due to the value of energy and other theoretical factors like the molecular volume and Connolly parameters.

Article Details

How to Cite
1.
Conductometric and Computational Study of Chloramphenicol at Different Solvents and Temperatures. Baghdad Sci.J [Internet]. 2024 Jul. 1 [cited 2025 Jan. 23];21(7):2308. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8239
Section
article

How to Cite

1.
Conductometric and Computational Study of Chloramphenicol at Different Solvents and Temperatures. Baghdad Sci.J [Internet]. 2024 Jul. 1 [cited 2025 Jan. 23];21(7):2308. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8239

References

Hofmann S, Dmitriev SN, Fahlander C, Gates JM, Roberto JB, Sakai H. On the discovery of new elements (IUPAC/IUPAP Provisional Report). Pure Appl Chem. 2018; 90(11): 1773-832. https://doi.org/10.1515/pac-2018-0918.

Zgarbová M, Otyepka M, Šponer J, Hobza P, Jurečka P. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Phy Chem Phys. 2010; 12(35): 10476-93. https://doi.org /10. 1039/ C002656E.

Al-Healy FM, Hameed YO. Electrochemical and thermodinamic study of tyrosine and its complexes in aqueous solution by conductivity measurement. Eurasia Proc Sci Technol Eng Math. 2019; 7: 48-57. http://www.epstem.net/en/pub/issue/50288/652621

Sood S. Chloramphenicol–a potent armament against multi-drug resistant (MDR) gram negative bacilli?. J Clin Diag Res. 2016; 10(2): DC01. https://doi.org/10.7860/ JCDR/2016/14989.7167.

Wang Y, Zhang W, Mhungu F, Zhang Y, Liu Y, Li Y, et al. Probabilistic risk assessment of dietary exposure to chloramphenicol in guangzhou, china. International Journal of Environmental Research and Public Health. 2021; 20;18(16): 8805. https://doi.org/10.3390/ijerph18168805.

Shen AY, Haddad EJ, Hunter‐Smith DJ, Rozen WM. Efficacy and adverse effects of topical chloramphenicol ointment use for surgical wounds: a systematic review. ANZ J Surg. 2018; 88(12): 1243-6.https://doi.org/10.1111/ans.14465

Drago L. Chloramphenicol resurrected: A journey from antibiotic resistance in eye infections to biofilm and ocular microbiota. Microorganisms. 2019; 7(9): 278. https://doi.org/ 10.3390/microorganisms7090278.

Patil N, Mule P. Sensitivity pattern of Salmonella typhi and paratyphi A isolates to chloramphenicol and other anti-typhoid drugs: an in vitro study. Inf Drug Resist. 2019; 12: 3217. https://doi.org/10.2147/IDR.S204618.

Simonetti SO, Kaufman TS, Larghi EL. Conjugation of Carbohydrates with Quinolines: A Powerful Synthetic Tool. Eur J Org Chem. 2022: e202200107. https://doi.org/10.1002/ejoc.202200107.

Peng Y, Li M, Jia X, Su J, Zhao X, Zhang S, et al. Cu nanoparticle-decorated boron–carbon–nitrogen nanosheets for electrochemical determination of chloramphenicol. ACS App Mat Interf. 2022; 14(25): 28956-64. https://doi.org /10.1021/acsami.2c06729.

Hameed YO, Thanon FA, Hani AM. Conductivity study of tetra aqua-1-10-phenanthroline cobalt(II) chloride [Co(1-10-phen)(H2O)4]Cl2 in methanol-water mixture at different temperatures, Nat J chem.2007.25:111-123. https://injchemistry.uobabylon.edu.iq/index.php/chem/article/view/617.

Fanar ME. Conductemetric study for the Ionic association of some transition metals complexes with some Amino acids in different solvents , 2020, Ph.D. thesis , Mosul University, Iraq. https://www.researchgate.net/publication/347529648_A_Conductemetric_Study_for_the_Ionic_Association_of_Some_Transition_Metals_Complexes_with_Some_Amino_Acids_in_Different_Solvents_llt_twsylyt_ast_dr_alnasr_mqdat_lbd_aalywny_jm_aalntqalyt_mkhtlft_mdhyb#fullTextFileContent.

Duverger E, Picaud F. Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Mod. 2020; 26(6): 1-0. https://doi.org/10.1007/s00894-020-04410-8.

Bešter-Rogač M. Nonsteroidal Anti-Inflammatory Drugs Ion Mobility: A Conductometric Study of Salicylate, Naproxen, Diclofenac and Ibuprofen Dilute Aqueous Solutions. Acta chim slov. 2009; 56(1). http://acta-arhiv.chem-soc.si/56/56-1-70.pdf

Pura S, Atun G. Conductometric study of ion association of hexaamminecobalt (III) complexes in ethanol+ water. J Chem Eng Data. 2002; 47(5): 1103-9. https://doi.org/10.1021/je010282y

Hassan EM, Mustafa YF, Merkhan MM. Computation in Chemistry: Representative Software and Resources. Int J Pharmacy Pharm St. 2022; 6(2): 1-10. https://bharatpublication.com/ijpps/ijpps_past_paper.php?volid=7.

Abdulrahman SH, Al-Healy FM. Electrical Conductance And Theoretical Study Of Glutamic Acid In Different Solvents at 310.16 k. Egy J Chem. 2021; 64(8): 4359-67. https://doi.org/10.21608/EJCHEM.2021.67200.3448

Lee WH, Wheaton RJ. Conductance of symmetrical, unsymmetrical and mixed electrolytes. J.Chem.Soc.1979. Faraday 175, 1128-1144. https://doi.org/10.1039/F29797501128

Naseri Boroujeni S, Liang X, Maribo-Mogensen B, Kontogeorgis GM. Comparison of Models for the Prediction of the Electrical Conductivity of Electrolyte Solutions. Ind Eng Chem Res. 2022; 61(8): 3168-85. https://doi.org/10.1021/acs.iecr.1c04365.

Bagotsky V S. Fundamentals of elecotrochemisry, 2nd Ed. 2006 Copyright by jhon wiley and Sons, Inc: 111-113. https://doi.org/10.1134/S1023193507110183

Wright M R. An introduction to aqueous electrolyte solutions, John wiley and sons, Ltd, 2007. https://doi.org/10.1002/cphc.200800219

Al-Healy FM, Hameed Y. Measurement of the electrical conductivity of equivalent a number of aspartic acid complexes in different percentages of water mixture with methanol at 310 absolute temperature. Al-Rafidain J Sci . 2020; 29(1): 80-94. https://doi.org/10.33899/RJS.2020.164483

McMurry JE. Fundamentals of organic chemistry. 5th Ed. Australia; Pacific Grove, CA, USA : Thomson-Brooks/Cole; 2010. https://archive.org/details/fundamentalsofor05edmcmu

Al-Allaf OY, Al-Tamer YM, Abdulfattah NM. Conductometric studies for association reaction of some amino acid complexes in water. Al-Rafidain J Sci. 2013; 24(11): 45-60. https://doi.org/10.33899/rjs.2013.80281

Sokol V, Tomaš R, Tominić I. Thermodynamics of the Association Reaction of RbBr in Binary Mixtures of 2-Butanol and Water from 288.15 to 308.15 K. Acta Chim Slov. 2008;55(2).https://acta-arhiv.chem-soc.si/55/55-2-308.pdf

Pattanayak SK, Chowdhuri S. Effect of Methanol on the Hydrogen bonding structure and dynamics in aqueous N-methylacetamide solution, 2014. J Mol Liq. 194: 141-148. https://doi.org/10.1016/j.molliq.2014.01.012

Lu J, Meng D, Li F, Guo M, Li Y. Theoretical study of the structure and ionization potentials of proline. Russian J Phy Chem. 2020; 94(7): 1427-32. https://doi.org/10.1134/S0036024420070201

Ibrahim AA. A Theoretical Study of the Docking of Medicines with some Proteins. Baghdad Sci J. 2023; 20(2): 483-491. https://doi.org/10.21123/bsj.2022.7064

Al-kirbasee NE, Alhimidi SR, Al-Ibadi MA. Qtaim study of the bonding in triosmium trihydide cluster [Os3(-H)3(m3-ƞ2-CC7H3(2CH3)NS)(CO)8]. Baghdad Sci J. 2021; 18(4): 1279-1285. https://doi.org/10.21123/bsj.2021.18.4.1279