Quotient Energy of Zero Divisor Graphs And Identity Graphs

Main Article Content

M. Lalitha Kumari
https://orcid.org/0000-0002-9800-1639
L. Pandiselvi
K. Palani
https://orcid.org/0000-0002-4811-4096

Abstract

Consider the (p,q) simple connected graph . The sum absolute values of the spectrum of quotient matrix of a graph  make up the graph's quotient energy. The objective of this study is to examine the quotient energy of identity graphs and zero-divisor graphs  of commutative rings using group theory, graph theory, and applications. In this study, the identity graphs  derived from the group  and a few classes of zero-divisor graphs  of the commutative ring R are examined.

Article Details

How to Cite
1.
Quotient Energy of Zero Divisor Graphs And Identity Graphs. Baghdad Sci.J [Internet]. 2023 Mar. 1 [cited 2025 Jan. 19];20(1(SI):0277. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8408
Section
article

How to Cite

1.
Quotient Energy of Zero Divisor Graphs And Identity Graphs. Baghdad Sci.J [Internet]. 2023 Mar. 1 [cited 2025 Jan. 19];20(1(SI):0277. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8408

References

Gutman I. The Energy of a Graph: Old and New Results. Algebraic Combinatorics and Applications. Springer, Berlin, Heidelberg. 2001; 196–211. https://doi.org/10.1007/978-3-642-59448-9_13

Gao W, Asghar A, Nazeer W. Computing Degree-Based Topological Indices of Jahangir Graph. Eng Appl Sci. Lett. 2018; 1(1): 16–22. http://dx.doi.org/10.30538/psrp-easl2018.0003

Zangi S, Ghorbani M. Eslampour M. On the eigenvalues of some matrices based on vertex degree. Iranian J Math. Chem. 2018; 9: 149–156. 10.22052/ijmc.2017.93637.1303

Adirasari RP, Suprajitno H, Susilowati L. The Dominant Metric Dimension of Corona Product Graphs. Baghdad Sci J. 2021; 18(2): 0349. https://doi.org/10.21123/bsj.2021.18.2.0349

Hussein LH, Abed SS. Fixed Point Theorems in General Metric Space with an Application. Baghdad Sci J. 2021; 18(1): 0812. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0812

Basavanagoud B, Chitra E. Degree square sum energy of graphs. Int. j. math. appl. 2018; 6(2B): 193–205. http://ijmaa.in/index.php/ijmaa/article/view/716

Palani K, Kumari ML. Locating geo spectrum and geo energy of graphs. Adv Appl Math Sci. 2021; 21(4): 2157-2167.https://www.mililink.com/issue_content.php?id=59&iId=395&vol=21&is=4&mon=February&yer=2022&pg=1615-2281

Palani K. Kumari ML. On Total Energy of a Graph. Adv Appl Math Sci. 2021; 21(2): 565-578. https://www.mililink.com/issue_content.php?id=59&iId=392&vol=21&is=2&mon=December&yer=2021&pg=519-1074

Palani K, Kumari ML, Pandiselvi L. Total Energy of Cycle and Some Cycle Related Graphs. J Phys.: Conf Ser. 2021; 1947: 012007. doi:10.1088/1742-6596/1947/1/012007

Beck I. Coloring of commutative rings. J Algebra. 1988; 116: 208−226. PII: 0021-8693(88)90202-5

Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. J Algebra. 1999; 217: 434−447. https://doi.org/10.1006/jabr.1998.7840

Rather BA, Ali F, Ullah A, Fatima N. Dad R. On Aγ eigenvalues of zero divisor graphs of integer modulo and Von Neumann regular rings. Symmetry. 2022; 14: 1710. https://doi.org/10.3390/sym14081710

Singh P, Bhat VK. Zero-divisor graphs of finite commutative rings: A survey. Surv. Math its Appl. 2020: 1-15. https://www.emis.de/journals/SMA/v15/p15_14.pdf

Kandasamy VWB, Smarandache F. Groups as Graphs. Romania: Editura CuArt; 2009. p. 170. https://ui.adsabs.harvard.edu/link_gateway/2009arXiv0906.5144V/doi:10.48550/arXiv.0906.5144