A Study on Co – odd (even) Sum Degree Edge Domination Number in Graphs
Main Article Content
Abstract
An edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domination value is defined. Further, the exact values of the above said parameters are found for some standard classes of graphs. The bounds of the co-odd (even) sum degree edge domination number are obtained in terms of basic graph terminologies. The co-odd (even) sum degree edge dominating sets are characterized. The relationships with other edge domination parameters are also studied.
Received 20/1/2023
Revised 11/2/2023
Accepted 12/2/2023
Published 1/3/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Shalaan MM, Omran AA. Co-even Domination in Graphs. Int J Control Autom. 2020; 13(3): 330-334. https://www.researchgate.net/profile/Ahmed-Omran-17/publication/343376769_Co-Even_Domination_In_Graphs/links/5f25eec8a6fdcccc43a24129/Co-Even-Domination-In-Graphs.pdf
Jeba JJ, Vinodhini NK, Subiksha KSD. Prime Labeling of Certain Graphs. Bull Pure Appl Sci Sec .E - math. stat. 2021; 40(2): 167- 171. https://doi.org/10.5958/2320-3226.2021.00019.9
Shalaan MM, Omran AA. Co-Even Domination Number in Some Graphs. IOP Conf Ser.: Mater Sci Eng. 2020; 928: 1-7. https://iopscience.iop.org/article/10.1088/1757-899X/928/4/042015
Harary F. Graph Theory. USA: Addison – Wesley; 1972.
Caro Y, Klostermeyer W. The Odd Domination Number of a Graph. J Comb Math Comb Comput. 2003; 44(3): 65-84. https://doi.org/10.7151/dmgt.1137
Kinsley AA, Karthika K. Odd Geo-Domination Number of a Graph. STD. 2020; 9(12): 442-447. https://drive.google.com/file/d/1pmZ56OjVyt_EPE9tVjimXf9_DqpjsnvG/view
Kumar UVC, Murali R, Girisha A. Edge Domination in Some Brick Product Graphs. TWMS J App Eng Math. 2020; 10(1): 173-180. https://jaem.isikun.edu.tr/web/images/articles/vol.10.no.1/17.pdf
Al-Harere MN, Mitlif RJ, Sadiq FA. Variant Domination Types for a Complete h-ary Tree. Baghdad Sci. J. 2021; 18(1): 2078-8665. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0797
Omran AA, Ibrahim TA. Whole Domination in Graphs. TWMS J. App. and Eng. Math. 2022; 12(4): 1506-1511. https://jaem.isikun.edu.tr/web/index.php/archive/117-vol12no4/932
Gallian JA. A Dynamic Survey of Graph Labeling. Electron. J. Comb. 2022; 1-623. https://www.combinatorics.org/ojs/index.php/eljc/article/viewFile/DS6/pdf
Al-Harere MN, Bakhash PAK. Tadpole Domination in Graphs. Baghdad Sci. J. 2018; 15(4): 466-471. https://doi.org/10.21123/bsj.2018.15.4.0466