Classification of Diseases in Oil Palm Leaves Using the GoogLeNet Model

Main Article Content

Asmah Indrawati
Abdul Rahman
Erwin Pane
Muhathir
https://orcid.org/0000-0002-8432-3100

Abstract

The general health of palm trees, encompassing the roots, stems, and leaves, significantly impacts palm oil production, therefore, meticulous attention is needed to achieve optimal yield. One of the challenges encountered in sustaining productive crops is the prevalence of pests and diseases afflicting oil palm plants. These diseases can detrimentally influence growth and development, leading to decreased productivity. Oil palm productivity is closely related to the conditions of its leaves, which play a vital role in photosynthesis. This research employed a comprehensive dataset of 1,230 images, consisting of 410 showing leaves, another 410 depicting bagworm infestations, and an additional 410 displaying caterpillar infestations. Furthermore, the major objective was to formulate a deep learning model for the identification of diseases and pests affecting oil palm leaves, using image analysis techniques to facilitate pest management practices. To address the core problem under investigation, the GoogLeNet deep learning approach was applied, alongside various hyperparameters. The classification experiments were executed across 16 trials, each capped at a computational timeframe of 10 minutes, and the predominant duration spanned from 2 to 7 minutes. The results, particularly derived from the superior performance in Model 4 (M4), showed evaluation accuracy, precision, recall, and F1-score rates of 93.22%, 93.33%, 93.95%, and 93.15%, respectively. These were highly satisfactory, warranting their application in oil palm companies to enhance the management of pest and disease attacks.

Article Details

How to Cite
1.
Classification of Diseases in Oil Palm Leaves Using the GoogLeNet Model. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 22];20(6(Suppl.):2508. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8547
Section
article

How to Cite

1.
Classification of Diseases in Oil Palm Leaves Using the GoogLeNet Model. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 22];20(6(Suppl.):2508. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8547

References

Nadilla F, Fitriani F, Ridwan R. Types of Disease in Palm Oil Plant (Elaeis guinensis Jacq.) and Techniques for Their Control at PT Perkebunan Nusantara I Kebun Baru Afdeling VI, Langsa City. J Biol Samudra. 2021; 3(2): 133–40. https://doi.org/10.33059/jbs.v2i1.2344

Ichsan M, Saputra W, Permatasari A. Oil Palm Smallholders on the edge: Why business partnerships need to be redefined. Oil Palm Smallholders on the edge: why business partnerships need to be redefined. Inf Brief. 2021; 1-12. https://sposindonesia.org/wp-content/uploads/2021/07/28.-eng-Oil-palm-smallholders-on-the-edge-Why-business-partnerships.pdf

Indriyadi W. Palm Oil Plantation in Indonesia: A Question of Sustainability. Salus Cultura: Jurnal Pembangunan Manusia dan Kebudayaan. 2022 Jun 30; 2(1): 1–10. https://doi.org/10.55480/saluscultura.v2i1.40

Yuliani A, Labellapansa A, Yulianti A. Klasifikasi Citra Daun Kelapa Sawit Yang Terkena Dampak Hama Menggunakan Metode K-Nearest Neighbor. In: Proceeding Seminar Nasional Informatika Medis. 2019; 1-6. https://journal.uii.ac.id/snimed/article/view/13857/pdf

Kurihara J, Koo V-C, Guey CW, Lee YP, Abidin H. Early Detection of Basal Stem Rot Disease in Oil Palm Tree Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging. Remote Sens. 2022; 14(3): 799. https://doi.org/10.3390/rs14030799

Kamal MM, Masazhar ANI, Rahman FA. Classification of Leaf Disease from Image Processing Technique. Indones. J Electr Eng Comput Sci. 2018 Apr 1; 10(1): 191–200. http://doi.org/10.11591/ijeecs.v10.i1.pp191-200

Xu K, Qian J, Hu Z, Duan Z, Chen C, Liu J, et al. A New Machine Learning Approach in Detecting the Oil Palm Plantations Using Remote Sensing Data. Remote Sens. 2021; 13(2): 236. https://doi.org/10.3390/rs13020236

Saragih R, Jean Cross Sihombing D, Rahmi E. Sistem Pakar Diagnosa Penyakit Kelapa Sawit Menggunakan Metode Dempster Shafer Berbasis Web. J Inf Technol Account. 2018; I(1): 2614–4484. http://jita.amikimelda.ac.id

Satia GAW, Firmansyah E, Umami A. Perancangan sistem identifikasi penyakit pada daun kelapa sawit (Elaeis guineensis Jacq.) dengan algoritma deep learning convolutional neural networks. J Ilm pertanian. 2022 Mar 31; 19(1): 1–10. https://doi.org/10.31849/jip.v19i1.9556

Olajide OB, Olufemi Ayodeji O, Olatunji Coker O, Munu S, Yakubu Y. An Inference System for Classifying Oil Palm Fungal Diseases. Int j sci res manag. 2021 Nov 6; 9(11): 611–620. https://ijsrm.in/index.php/ijsrm/article/view/3469

Wiratmoko D, Prasetyo AE, Jatmiko RH, Yusuf MA, Rahutomo S. Identification of Ganoderma boninense Infection Levels on Oil Palm Using Vegetation Index. Int J Oil Palm. 2018 Sep. 23 1(3): 110-120. https://ijop.id/index.php/ijop/article/download/16/13

Marcelina D, Yulianti E, Mair RZ. Penerapan Metode Forward Chaining Pada Sistem Pakar Identifikasi Penyakit Tanaman Kelapa Sawit. J Ilm Inf Glob. 2022; 13(2): 1-9. http://dx.doi.org/10.36982/jiig.v13i2.2299

Rasywir E, Sinaga R, Pratama Y, Dinamika U, Jambi B. Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN). J Inf dan Komp. 2020; 22(2): 117-123. http://ejournal.bsi.ac.id/ejurnal/index.php/paradigma/issue/archive/

Asrianda A, Aidilof HAK, Pangestu Y. Machine Learning for Detection of Palm Oil Leaf Disease Visually using Convolutional Neural Network Algorithm. J Inf Telecommun Eng. 2021 Jan 18; 4(2): 286–93.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going Deeper with Convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. arXiv:1409.4842. 2015; 1-9. https://doi.org/10.48550/arXiv.1409.4842

Patani A, Pardikar I, Doshi P, Rodge S, Khachane S. Plant Leaf Recognition and Disease Detection Using GoogLeNet. J emerg technol innov Res. 2021; 8(5): 1-8. https://www.jetir.org/papers/JETIR2105071.pdf

Pangaribuan R, Marheni M, Lubis L. The Attack Level of Cremastopsyche pendula Joannis Bagworm on Produce Palm Oil and Imature in Rambong Sialang Estate PTPP. London Sumatera Indonesia. J Agroekoteknologi. 2017; 5(4): 922–31. https://talenta.usu.ac.id/joa/article/view/2509/1895

Priwiratama H, Perdana Rozziansha TA, Susanto A, Prasetyo AE. Effect of Bagworm Pteroma pendula Joannis Attack on the Decrease in Oil Palm Productivity. J Hama penyakit tumbuh trop. 2019 Sep 18; 19(2): 101.

Anggraini S, Berutu AG. Intensity of Attack of Fire caterpillars (Setothosea asigna Van Eecke) ON PLANTS Producing Palm Oil (Tm) Communities In Biskang Village, Danau Paris District, Aceh Singkil Regency, Aceh. J Pertan Agros. 2022; 24(2): 295–300. https://e-journal.janabadra.ac.id/index.php/JA/article/download/1896/1275

Hafifah F, Rahman S, Asih S. Klasifikasi Jenis Kendaraan Pada Jalan Raya Menggunakan Metode Convolutional Neural Networks (CNN). J Terap Inform Nusant. 2021; 2(5): 292–301. https://ejurnal.seminar-id.com/index.php/tin

Muhathir, Rizal RA, Sihotang JS, Gultom R. Comparison of SURF and HOG extraction in classifying the blood image of malaria parasites using SVM. Int J Comput sci Inf Technol Res. IEEE. 2019; 1-6. https://doi.org/10.1109/ICoSNIKOM48755.2019.9111647

Muhathir, Al-Khowarizmi. Measuring the Accuracy of SVM with Varying Kernel Function for Classification of Indonesian Wayang on Images. International Conference on Decision Aid Sciences and Application (DASA). IEEE. 2020; 1190–1196. https://doi.org/10.1109/DASA51403.2020.9317197

Ula M, Muhathir M, Sahputra I. Optimization of Multilayer Perceptron Hyperparameter in Classifying Pneumonia Disease Through X-Ray Images with Speeded-Up Robust Features Extraction Method. Int J Adv Comput Sci Appl. 2022; 13(10): 1-8. https://thesai.org/Downloads/Volume13No10/Paper_25-Optimization_of_Multilayer_Perceptron_Hyperparameter.pdf

Hasan AM, Qasim AF, Jalab HA, Ibrahim RW. Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction. Baghdad Sci J. 2022; 20(1): 221-234. https://dx.doi.org/10.21123/bsj.2022.6782

Abdullah TH, Alizadeh F, Abdullah BH. COVID-19 Diagnosis System using SimpNet Deep Model. Baghdad Sci J. 2022; 19(5):1078–89. https://doi.org/10.21123/bsj.2022.6074

Muhathir M, Farhan MDR, Syah RBY, Khairina N, Muliono R. Convolutional Neural Network (CNN) of Resnet-50 with Inceptionv3 Architecture in Classification on X-Ray Image. In: Radek S, Silhavy P, editors. Artificial Intelligence Application in Networks and Systems. Cham: Springer International Publishing; 2023. p. 208–21.

Melisah M, Muhathir M. A modification of the Distance Formula on the K-Nearest Neighbor Method is Examined in Order to Categorize Spices from Photo Using the Histogram of Oriented Gradient International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). 2023; 23–8. https://doi.org/10.1109/ICCoSITE57641.2023.10127780

Safira I, Muhathir M. Analysis of Different Naïve Bayes Methods for Categorizing Spices Through Photo using the Speeded-up Robust Feature. International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). 2023. p. 29–34. https://doi.org/10.1109/ICCoSITE57641.2023.10127787