The Impact of VDR-FokI Polymorphism in Iraqi Patients with Prostate Cancer and Prostate Benign Hyperplasia.

Authors

DOI:

https://doi.org/10.21123/bsj.2024.8933

Keywords:

Benign prostate hyperplasia, Prostate cancer, Prolactin, Testosterone, VDR-Fok1 Polymorphism.

Abstract

The polymorphism in the vitamin D receptor gene FokI position is used to evaluate the polymorphism impact on the levels of vitamin D, testosterone and prolactin hormones in the sera of patients with prostate cancer and benign prostatic hyperplasia vs. healthy controls. The vitamin D receptor gene Fok1 restriction site was amplified and examined by TaqMan RT-PCR technique. It was found that the TT genotype played a protective effect in 70% and 50% in prostate cancer and benign prostatic hyperplasia patients respectively. While, the CC genotype was found to be 100% disease-attributed genotype in both prostate cancer and benign prostate hyperplasia. Also, the distribution of genotypes (TT, TC and CC) was not consistent with Hardy Weinberg equation in the patients with prostate cancer as a significant difference was found by chi-square test (X2 ˃3.84) at P ≥0.05 between the observed and expected frequencies. But wasn’t seen in patients with BPH or control group. The level of vitamin D was significantly affected by the genotype CC of VDR-FOK I in prostate cancer patients compared with TT and TC genotypes. There were no significant differences in Vit. D level among the three genotypes in the patients with BPH and the healthy control group. In association with genotypes, the levels of testosterone and prolactin did not differ significantly among the studied groups. It could be concluded that the vitamin D receptor FokI polymorphism is associated with Iraqi prostate cancer patients more than in benign prostate hyperplasia with vitamin D deficiency in blood serum. 

References

Frigo DE, Bondesson M, Williams C. Nuclear receptors: from molecular mechanisms to therapeutics. Essays Biochem. 2021; 65: 847–856. https://doi.org/10.1042/EBC20210020.

Petkovich M, Chambon P. Retinoic acid receptors at 35 years, J Mol Endocrinol. 2022; 69(4): T13–T24. https://doi.org/10.1530/JME-22-0097.

El-Sharkawy A, Malki A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules. 2020; 25(14): 3219. https://doi.org/10.3390/molecules25143219.

Janoušek J, Pilařová V, Macáková K, Nomura A, Veiga-Matos J, da Silva DD, et al. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci. 2022; 59(8): 517–554. https://doi.org/10.1080/10408363.2022.2070595.

Rochel, N. Vitamin D and Its Receptor from a Structural Perspective. Nutrients. 2022; 14(14), 2847: 1-13. https://doi.org/10.3390/nu14142847

Krstic N, Bishop N, Curtis B, Cooper C, Harvey N, Lilycrop K, et al. Early life vitamin D depletion and mechanical loading determine methylation changes in the RUNX2, RXRA, and osterix promoters in mice. Genes Nutr. 2022; 17(7): 1-11. https://doi.org/10.1186/s12263-022-00711-0

Farivar S, Amirinejad R, Gargari BN, Hassani SB, Farsani ZS. In Silico Analysis of Regulatory Elements of the Vitamin D Receptor. Baghdad Sci J. 2020; 17(2): 463-470. https://doi.org/10.21123/bsj.2020.17.2.0463.

Bikle DD. Vitamin D: Newer Concepts of Its Metabolism and Function at the Basic and Clinical Level. J Endocr Soc. 2020 Feb ; 4(2): 1-20. https://doi.org/10.1210/jendso/bvz038.

Beckett E. More Than Bone Health: The Many Roles for Vitamin D. Nutrients, 2020; 12: 2388. https://doi.org/10.3390/nu12082388

Zacharioudaki M, Messaritakis I, Galanakis E. Vitamin D receptor, vitamin D binding protein and CYP27B1 single nucleotide polymorphisms and susceptibility to viral infections in infants. Sci Rep. 2021; 11: 13835. https://doi.org/10.1038/s41598-021-93243-3

Usategui-Martín R, De Luis-Román DA, Fernández-Gómez JM, Ruiz-Mambrilla M, Pérez-Castrillón JL. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(2): 360. https://doi.org/10.3390/nu14020360

Pepineli AC, Alves HV, Tiyo BT, Macedo LC, Visentainer L, de Lima NQA, et al. Vitamin D Receptor Gene Polymorphisms Are Associated with Leprosy in Southern Brazil. Front Immunol. 2019; 10 (2157): 1-6. https://doi.org/10.3389/fimmu.2019.02157

Baker AR, Mcdonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, et al. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Nat Acad Sci USA.1988; 85: 3294-3298. https://doi.org/10.1073/pnas.85.10.3294

Nunes IFOC, Cavalcante AACM, Alencar MVOB, Carvalho MDF, Sarmento JLR, Teixeira NSCCA, et al. Meta-Analysis of the Association Between the rs228570 Vitamin D Receptor Gene Polymorphism and Arterial Hypertension Risk. Adv Nutr. 2020; 11: 1211–1220. https://doi.org/10.1093/advances/nmaa076

Waheeb MQ, Aziz HA, Alabdali YAJ. Gene Polymorphism Vitamin D receptor FokI in Thalassemia Children in AL-Muthanna Province. Med legal Update. 2019; 19(2): 383-389. https://doi.org/10.37506/mlu.v19i2.808

Meza-Meza MR, Vizmanos B, Rivera-Escoto M, Ruiz-Ballesteros AI, Pesqueda-Cendejas K, Parra-Rojas I, et al . Vitamin D Receptor (VDR) Genetic Variants: Relationship of FokI Genotypes with VDR Expression and Clinical Disease Activity in Systemic Lupus Erythematosus Patients. Genes. 2022; 13(11) :1-20. https://doi.org/10.3390/genes13112016

Awasthi R, Manger PT, Khare RK. Fok I and Bsm I gene polymorphism of vitamin D receptor and essential hypertension: a mechanistic link. Clin Hypertens. 2023; 29(5): 1-12. https://doi.org/10.1186/s40885-022-00229-y

Ege F, Sarıkaya S. FokI polymorphism in the vitamin D receptor gene in patients with hip osteoarthritis: A case-control study. Turk J Phys Med Rehab. 2022; 68(4): 532-537. https://doi.org/10.5606/tftrd.2022.9821

Dovnik A, Dovnik NF. Vitamin D and Ovarian Cancer: Systematic Review of the Literature with a Focus on Molecular Mechanisms. Cells. 2020; 9(335): 1-15. https://doi.org/10.3390/cells9020335

Pete NM, Ramírez CP, Montoro MDMM, Martínez FM, Fernández-Llimos F, Pozo AS, et al. Association of vitamin D receptor gene polymorphisms with rheumatoid arthritis. Arch Med. 2021; https://doi.org/10.5114/aoms/116606

Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. 2012. SAS. Inst. Inc. Cary. N.C. USA.

Krasniqi E, Boshnjaku A, Wagner K, Wessner B. Association between Polymorphisms in Vitamin D Pathway-Related Genes, Vitamin D Status, Muscle Mass and Function. Nutrients. 2021; 13(3109): 1-24. https://doi.org/10.3390/nu13093109

Hama T, Norizoe C, Suga H, Mimura T, Kato T, Moriyama H, et al. Prognostic Significance of Vitamin D Receptor Polymorphisms in Head and Neck Squamous Cell Carcinoma. PLoS One .2011; 6(12): e29634:1-6. https://doi.org/10.1371/journal.pone.0029634

Mishra DK, Wu Y, Sarkissyan M, Sarkissyan S, Chen Z, Shang X, et al. Vitamin D Receptor Gene Polymorphisms and Prognosis of Breast Cancer among African-American and Hispanic Women. PLoS One. 2013; 8(3): e57967: 1-10. https://doi.org/10.1371/journal.pone.0057967

Beysel S, Eyerci N, Pinarli FA, Apaydin M, Kizilgul M, Caliskan M, et al. VDR gene FokI polymorphism as a poor prognostic factor for papillary thyroid cancer. Tumor Biol. 2018; 9: 1-8. https://doi.org/10.1177/1010428318811766

Ruan L, Zhu JG, Pan C, Hua X, Yuan DB, Li ZM, et al. Association between Single Nucleotide Polymorphism of Vitamin D Receptor Gene FokI Polymorphism and Clinical Progress of Benign Prostatic Hyperplasia. Sci World J. 2015; 235895: 1-5. https://doi.org/10.1155/2015/235895

El-attar AZ, Hussein S, Salama MFA, Ibrahim HM, AlKaramany AS, Elsawi MK, et al. Vitamin D receptor polymorphism and prostate cancer prognosis. Curr Urol. 2022 Dec; 16(4): 246–255. https://doi.org/10.1097/CU9.0000000000000141.

Mi Y, Chen Y, Chen J, Zhang L, Zuo L, Zou J. Updated analysis of vitamin D receptor gene FokI polymorphism and prostate cancer susceptibility. Arch Med Sci. 2017; 13(6): 1449–1458. https://doi.org/10.5114/aoms.2016.61793

Al-Janabi AM, Algenabi AA, Alkhafaji SM. Association of Vitamin D Receptor-FokI Gene Polymorphism with Breast Cancer Risk in Iraqi Female Patients. Int J Sci Res. 2020; 9(7): 1081-1086. https://doi.org/10.21275/SR20617012741

Jeon S, Shin E. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018; 50: 20: 1-14. https://doi.org/10.1038/s12276-018-0038-9

Bhoora S, Punchoo R. Policing Cancer: Vitamin D Arrests the Cell Cycle. Int J Mol Sci. 2020; 21, 9296: 1-20. https://doi.org/10.3390/ijms21239296

Polek TC, Weigel N, Vitamin D and Prostate Cancer. J Androl. 2002; 23(1): 9-17. https://doi.org/10.1002/j.1939-4640.2002.tb02596.x

Fleet JC, De Smet M, Johnson R, Li Y. Vitamin D and Cancer: A review of molecular mechanisms. Biochem J. 2012; 441(1): 61–76. https://doi.org/10.1042/BJ20110744

Liu W, Zhang L, Xu H, Li Y, Hu CM, Yang JY, et al. The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. Int J Mol Sci. 2018; 19, 2736: 1-16. https://doi.org/10.3390/ijms19092736

Moukayed M, Grant WB. Molecular Link between Vitamin D and Cancer Prevention. Nutrients. 2013; 5(10): 3993-4021. https://doi.org/10.3390/nu5103993.

Carlberg C, Munoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol. 2022; 79 (2): 217–230. https://doi.org/10.1016/j.semcancer.2020.05.018.

Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020; 21, 9739: 1-55. https://doi.org/10.3390/ijms21249739

Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action and Pleiotropic Effects. Physiol Rev. 2016; 96: 365–408. https://doi.org/10.1152/physrev.00014.2015

Batai K, Murphy AB, Nonn L and Kittles RA. Vitamin D and Immune Response: Implications for Prostate Cancer in African Americans. Front Immunol. 2016; 7: 53. https://doi.org/10.3389/fimmu.2016.00053

Mustafa AJ, Balaky HM, Ismail PA. The role of Adipocytokines, Vitamin D, and C in Colorectal Cancer. Baghdad Sci J. 2023; 20(3): 690-699. https://doi.org/10.21123/bsj.2022.7245

Karkeni E, Morin SO, Tayeh B, Goubard A, Josselin E, Castellano R, Fauriat C, Guittard G, Olive D, Nunès JA. Vitamin D Controls Tumor Growth and CD8+ T Cell Infiltration in Breast Cancer. Front Immunol. 2019; 10(1307): 1-12. https://doi.org/10.3389/fimmu.2019.01307

Krill D, DeFlavia P, Dhir R, Luo J, Becich MJ, Lehman E, Getzenberg RH. Expression patterns of vitamin D receptor in human prostate. J Cell Biochem. 2001; 82(4): 566-572. https://doi.org/10.1002/jcb.1185.

Rai V, Abdo J, Agrawal S, Agrawal DK. Vitamin D Receptor Polymorphism and Cancer: An Update. Anticancer Res. 2017; 37: 3991-4003. https://doi.org/10.21873/anticanres.11784

Wang H, Chen W, Li D, Yin X, Zhang X, Olsen N, et al. Vitamin D and chronic diseases. Aging Dis. 2017; 8(3): 346–353. https://doi.org/10.14336/AD.2016.1021

Şahin A, Toprak T, Kutluhan MA, Ürkmez A, Yıldırım C,Verit A. Is Prostate Cancer Related to Low Vitamin D Level? Bull Urooncol. 2019; 18(3): 113-116. https://doi.org/10.4274/uob.galenos.2019.1221

Yang X, Du WW, Li H, Liu F, Khorshidi A, Rutnam JZ, et al. Both mature miR-17-5p and passenger strand miR-17-3p target TIMP3 and induce prostate tumor growth and invasion. Nucleic Acids Res. 2013; 41(21): 9688–9704. https://doi.org/10.1093/nar/gkt680

Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, et al Molecular determinants of MED1 interaction with the DNA bound VDR–RXR heterodimer. Nucleic Acids Res. 2020 Nov 4; 48(19): 11199–11213. https://doi.org/10.1093/nar/gkaa775

Abdulrahman MS, El-Yassin HD., Alwan NAS.Serum Vitamin Levels among Iraqi Cancer Patients Receiving Chemotherapy. Open Access Maced J Med Sci. 2021; Apr 15; 9(B): 231-234. https://doi.org/10.3889/oamjms.2021.5469

Najeeb HA, Othman R, Salih SF Mohammed AA, AL Ismaeel Q. Vitamin D level and endogenous DNA damage in patients with cancers in Duhok city, KRG-Iraq. Ann Med Surg. 2020; DEC 60: 462–467. https://doi.org/10.1016/j.amsu.2020.10.065

Downloads

Issue

Section

article

How to Cite

1.
The Impact of VDR-FokI Polymorphism in Iraqi Patients with Prostate Cancer and Prostate Benign Hyperplasia. Baghdad Sci.J [Internet]. [cited 2025 Jan. 26];22(4). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8933