Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks

Main Article Content

Ayham Darwich
https://orcid.org/0000-0002-2027-7950
Ebrahim Ismaiel
https://orcid.org/0000-0003-4139-9639
Ayman Al-kayal
https://orcid.org/0009-0007-9638-8570
Mujtaba Ali
Mohamed Masri
Hasan Mhd Nazha
https://orcid.org/0000-0003-1531-1824

Abstract

Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforward neural network (FNN) model. Data acquisition involved 60 subjects diagnosed with the studied cases. The implementation of FNN achieved an accuracy of 96.6% using 50% of the dataset as training data and 92.8% using only 30% training data. The comparison with related work shows good impact of using the differential values of pressure points as input for neural networks compared with raw data.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Darwich A, Ismaiel E, Al-kayal A, Ali M, Masri M, Nazha HM. Recognizing Different Foot Deformities Using FSR Sensors by Static Classification of Neural Networks. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2024 Feb. 22];20(6(Suppl.):2638. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8968
Section
article

References

De Groote F, Falisse A. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait. Proc Biol Sci. 2021; 288(1946): 20202432. https://doi.org/10.1098/rspb.2020.2432

Sethi D, Bharti S, Prakash C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work. Artif Intell Med. 2022; 129(2022): 102314. https://doi.org/10.1016/j.artmed.2022.102314

Osoba MY, Rao AK, Agrawal SK, Lalwani AK. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig Otolaryngol. 2019; 4(1): 143-53. https://doi.org/10.1002/lio2.252

Neves MP, da Conceição CS, Lucareli PR, da Silva Barbosa RS, Vieira JP, de Lima Brasileiro AJ, et al. Effects of Foot Orthoses on Pain and the Prevention of Lower Limb Injuries in Runners: Systematic Review and Meta-Analysis. J Sport Rehabil. 2022; 31(8): 1067-74. https://doi.org/10.1123/jsr.2021-0302

McClure PK, Herzenberg JE. The natural history of lower extremity malalignment. J Pediatr Orthop. 2019 J; 39(6): S14-9. https://doi.org/10.1097/BPO.0000000000001361

Douglas C, Wright J, Jacobs B. Variations in gait development: what is normal and when should I be concerned?. Paediatr Child Health. 2022; 32(2): 71-6. https://doi.org/10.1016/j.paed.2021.11.005

Collins C. Getting Ready for Foot Care Certification: Foot Care Basics: Foot Care Basics. J Wound Ostomy Continence Nurs. 2019; 46(3): 248–50. https://doi.org/10.1097/WON.0000000000000531.

Jiang H, Mei Q, Wang Y, He J, Shao E, Fernandez J, Gu Y. Understanding foot conditions, morphologies and functions in children: a current review. Front Bioeng Biotechnol. 2023; 11(2023): 1192524. https://doi.org/10.3389/fbioe.2023.1192524

Arachchige SN, Chander H, Knight A. Flatfeet: Biomechanical implications, assessment and management. Foot. 2019; 38(2019): 81-5. https://doi.org/10.1016/j.foot.2019.02.004

Hadj-Moussa F, Ngan CC, Andrysek J. Biomechanical factors affecting individuals with lower limb amputations running using running-specific prostheses: A systematic review. Gait Posture. 2022; 92: 83-95. https://doi.org/10.1016/j.gaitpost.2021.10.044

Zhang B, Lu Q. A current review of foot disorder and plantar pressure alternation in the elderly. Phys Act Health. 2020; 4(1): 95. https://doi.org/10.5334/paah.57

Osher L, Shook JE. Imaging of the Pes cavus deformity. Clin Podiatr Med Surg. 2021; 38: 303–21. https://doi.org/10.1016/j.cpm.2021.03.004

Ortolani M, Leardini A, Pavani C, Scicolone S, Girolami M, Bevoni R, et al. Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools. Sci Rep. 2021; 11(1): 16139. https://doi.org/10.1038/s41598-021-95708-x

Ahmad AA, Ghanem AF, Hamaida JM, Maree MS, Aker LJ, Kamesh MI, et al. Magnetic resonance imaging of severe idiopathic club foot treated with one-week accelerated Ponseti (OWAP) technique. Foot Ankle Surg. 2022; 28(3): 338–46. https://doi.org/10.1016/j.fas.2021.04.012

Alsabek MB, Abdul Aziz AR. Diabetic foot ulcer, the effect of resource-poor environments on healing time and direct cost: A cohort study during Syrian crisis. Int Wound J. 2022; 19(3): 531–7. https://doi.org/10.1111/iwj.13651

Tan AM, Fuss FK, Weizman Y, Woudstra Y, Troynikov O. Design of low cost smart insole for real time measurement of plantar pressure. Procedia Technol. 2015; 20(2015): 117–22. https://doi.org/ 10.1016/j.protcy.2015.07.020

Ren B, Liu J. Design of a Plantar Pressure Insole Measuring System Based on Modular Photoelectric Pressure Sensor Unit. Sensors. 2021;21(11):3780. https://doi.org/10.3390/s21113780

Zhang Q, Wang YL, Xia Y, Wu X, Kirk TV, et al. A low-cost and highly integrated sensing insole for plantar pressure measurement. Sens BioSensing Res. 2019; 26(2019): 100298. https://doi.org/10.1016/j.sbsr.2019.100298

Fazio R, Perrone E, Velázquez R, De Vittorio M, Visconti P. Development of a self-powered piezo-resistive smart insole equipped with low-power BLE connectivity for remote gait monitoring. Sensors. 2021; 21(13): 4539. https://doi.org/10.3390/s21134539

Wang W, Cao J, Yu J, Liu R, Bowen CR, et al. Self-powered smart insole for monitoring human gait signals. Sensors. 2019 ;19(24): 5336. https://doi.org/10.3390/s19245336

Park J, Kim M, Hong I, Kim T, Lee E, Kim E-A, et al. Foot plantar pressure measurement system using highly sensitive crack-based sensor. Sensors. 2019; 19(24). https://doi.org/10.3390/s19245504

Suprapto SS, Setiawan AW, Zakaria H, Adiprawita W, Supartono B. Low-cost pressure sensor matrix using velostat. 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), IEEE; 2017. https://doi.org/10.1109/ICICI-BME.2017.8537720

López DL, González LC, Iglesias ME, Canosa JL, Sanz DR, Lobo CC, et al. Quality of Life Impact Related to Foot Health in a Sample of Older People with Hallux Valgus. Aging Dis. 2016;7 (1):45–52. https://doi.org/ 10.14336/AD.2015.0914

Subramaniam S, Majumder S, Faisal AI, Deen MJ. Insole-based systems for health monitoring: Current solutions and research challenges. Sensors. 2022; 22(1): 438. https://doi.org/10.3390/s22020438

Wang M, Wang X, Fan Z, Chen F, Zhang S, Peng C. Research on feature extraction algorithm for plantar pressure image and gait analysis in stroke patients. J Vis Commun Image Represent. 2019; 58(2019): 525–31. https://doi.org/10.1016/j.jvcir.2018.12.017

Chae J, Kang Y-J, Noh Y. A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data. Sensors. 2020; 20(16):4481. https://doi.org/10.3390/s20164481

Rosero-Montalvo PD, Fuentes-Hernández EA, Morocho-Cayamcela ME, Sierra-Martínez LM, Peluffo-Ordóñez DH. Addressing the data acquisition paradigm in the early detection of pediatric foot deformities. Sensors. 2021; 21(13):4422. https://doi.org/10.3390/s21134422

Mun F, Choi A. Deep learning approach to estimate foot pressure distribution in walking with application for a cost-effective insole system. J Neuroeng Rehabil. 2022; 19(1): 4. https://doi.org/10.1186/s12984-022-00987-8

Mei Z, Ivanov K, Zhao G, Wu Y, Liu M, Wang L. Foot type classification using sensor-enabled footwear and 1D-CNN. Measurement. 2020; 165(2020): 108184. https://doi.org/10.1016/j.measurement.2020.108184

Balbin JR, De Guzman JPB, Trinidad JGN, Yaya FDS. Foot deformity determination and health risk prediction through foot plantar analysis using pressure sensor matrix. 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS), IEEE; 2021. https://doi.org/10.1109/I2CACIS52118.2021.9495907

D’Angelantonio E, Lucangeli L, Camomilla V, Mari F, Mascia G, Pallotti A. Classification-Based Screening of Phlebopathic Patients Using Smart Socks. Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE; n.d. https://doi.org/10.1109/MetroInd4.0IoT54413.2022.9831481

Chen M, Huang B, Xu Y. Postural kyphosis detection using intelligent shoes. 2008 IEEE International Conference on Robotics and Automation, IEEE; 2008. https://doi.org/10.1109/ROBOT.2008.4543658

Ghani APDRF, Hassan HS. Human Computer Interface for Wheelchair Movement. Baghdad Sci J. 2017; 14(2): 0437. https://doi.org/10.21123/bsj.2017.14.2.0437

Florez JA, Velasquez A. Calibration of force sensing resistors (fsr) for static and dynamic applications. 2010 IEEE ANDESCON, IEEE; 2010. https://doi.org/10.1109/ANDESCON.2010.5633120

Queen RM, Mall NA, Hardaker WM, Nunley JA. Describing the medial longitudinal arch using footprint indices and a clinical grading system. Foot Ankle Int. 2007; 28(4): 456–62. https://doi.org/10.3113/fai.2007.0456

Domínguez-Morales MJ, Luna-Perejón F, Miró-Amarante L, Hernández-Velázquez M, Sevillano-Ramos JL. Smart footwear insole for recognition of foot pronation and supination using neural networks. Appl Sci. 2019; 9(19): 3970. https://doi.org/10.3390/app9193970

Barton JG, Lees A. Development of a connectionist expert system to identify foot problems based on under-foot pressure patterns. Clin Biomech. 1995; 10(7): 385–91. https://doi.org/10.1016/0268-0033(95)00015-d

Xu S, Zhou X, Sun Y-N. A novel gait analysis system based on adaptive neuro-fuzzy inference system. Expert Syst Appl. 2010; 37(2): 1265–9. https://doi.org/10.1016/j.eswa.2009.06.026

AL-Dabagh samar Y, ALjaber NA, AL-Hassnawy GO. Designing and Constructing the Strain Sensor Using Microbend Multimode Fiber . Baghdad Sci J. 2018; 15(2): 0217. https://doi.org/10.21123/bsj.2018.15.2.0217