Principally ss-Supplemented Modules
Main Article Content
Abstract
In this paper, we introduce and study the concepts of principally ss-supplemented and principally ss-lifting modules. These two concepts are natural generalizations of the concepts of ss-supplemented and ss-lifting modules. Several properties of these modules are proven. Here, principally ss-lifting modules are focused on. New characterizations of principally ss-supplemented modules are made using principally ss-lifting modules. Here, weakly principally ss-supplemented is defined. It is proved that a module T is weakly principally ss-supplemented module if and only if it is principally ss-supplemented. One of the first results states that every strongly local module is principally ss-supplemented. It is shown that if T be a hollow module, then T is principally ss-supplemented if and only if it is strongly local. If Rad(T) small in T, then T is principally ss-supplemented if and only if T is principally supplemented and Rad(T)⊆Soc(T). Moreover, if T=T_1⨁T_2 with T_1 and T_2 principally ss-supplemented modules and T is a duo, then T is principally ss-supplemented. It is also shown that, if T is indecomposable, then T is principally ss-lifting if and only if T is a principally hollow module besides if T is a principally hollow module then T is principally ss-supplemented. In this work, the following results are proved: if T be a module with the property (ss -PD_1), then every indecomposable cyclic submodule of T is either small in T or a summand of T. Also, if T is a module over a local ring R and T has the property (ss-PD_1), then every cyclic submodule of T is either small in T, or a summand of T.
Received 06/05/2023,
Revised 08/09/2023,
Accepted 10/09/2023,
Published Online First 20/03/2024
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules. supplements and Projectivity in module theory. Frontiers in Mathematics, Birkauser Verlag; 2006. https://doi.org/10.1007/3-7643-7573-6
Alwan AH. g- Small intersection graph of a module. Baghdad Sci J. 2024. https://doi.org/10.21123/bsj.2024.8967
Hussain MQ, Dheyab AH, Yousif RA. Semihollow-lifting modules and Projectivity. Baghdad Sci J 2022; 19(4): 811-815. http://dx.doi.org/10.21123/bsj.2022.19.4.0811
Kaynar E, Calisici H, Türkmen E. ss-Supplemented modules. Commun Fac Sci Univ Ank Ser A1 Math Stat. 2020; 69 (1): 473-485. https://doi.org/10.31801/cfsuasmas.585727
Zhou DX, Zhang XR. Small-essential submodules and morita duality, Southeast Asian Bull. 2011; 35(6): 1051-1062.
Soydan I, Türkmen E. Generalizations of ss-supplemented modules. Carpathian Math Publ. 2021; 13(1): 119-126. https://orcid.org/0000-0001-7032-6485
Türkmen BN, Kılıç B. On cofinitely ss-supplemented modules. Algebra Discrete Math. 2022; 34(1): 141-151. https://doi.org/10.12958/adm1668
Eryilmaz F. ss-Lifting modules and rings. Miskolc Math. Notes. 2021; 22(2): 655-662. https://doi.org/10.18514/MMN.2021.3245
Kasch F. Modules and Rings. University of Stirling, Stirling, Scotland, Academic Press, London; 1982.
Acar U, Harmanci A. Principally Supplemented Modules. Albanian J Math. 2010; 4(3): 74-78.
Ozcan AC, Harmanci A, Smith PF. Duo Modules. Glasg Math J. 2006; 48(3): 533-545. https://doi.org/10.1017/S0017089506003260
Kamal MA, Yousef A. On Principally Lifting Modules. IEJA. 2007; 2(2): 127-137. https://dergipark.org.tr/en/pub/ieja/issue/25209/266404