Synthesis and Identification of Triorganotin (IV)-Tyrosine Complexes and Study Their Applications as Antioxidant by DPPH and CUPRAC Methods.

Authors

  • Rafid Ryyis Arraq Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq.
  • Angham G. Hadi Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq. https://orcid.org/0000-0002-5396-7560

DOI:

https://doi.org/10.21123/bsj.2024.9043

Keywords:

فعالية مضادات الأكسدة, تفاعل التكثيف, طريقة CUPRAC, معقدات ثلاثية عضوية للقصدير- تايروسين, تايروسين.

Abstract

Abstract

Through condensation reactions between tyrosine (ligand) and triorganotin (IV) chloride salts in the presence of sodium hydroxide, three triorganotin (IV)-tyrosine complexes were successfully synthesized. All the components were dissolved in methanol and refluxed for five hours. The produced complexes were characterized by elemental analysis (CHN), Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H, 13C and 119Sn-NMR). Based on spectrum measurements, trigonal bipyramidal geometries for the complexes produced in yields of 85–97% were assigned. Using the DPPH and CUPRAC methods, this study examined the antioxidant activity of tri organotin (IV)-tyrosine complexes. Due to the metal moiety, organotin (IV) complexes had more antioxidant activity than ligands, whereas trimethyl tin (IV) complex showed a higher level of antioxidant activity than other complexes.

References

Alkadi H. A review on free radicals and antioxidants. Infect Disord Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2020; 20 (1), 16-26.‏ https://doi.org/10.2174/1871526518666180628124323.

Jamshidi-Kia F, Wibowo J P, Elachouri M, Masumi R, Salehifard-Jouneghani A, Abolhassanzadeh Z, et al. Battle between plants as antioxidants with free radicals in human body. J Herbmed Pharmacol. 2020; 9(3):191-199. https://doi.org/10.34172/jhp.2020.25.

Bacci A, Runfola M, Sestito S, Rapposelli S. Beyond antioxidant effects: Nature-based templates unveil new strategies for neurodegenerative diseases. Antioxid. 2021; 10 (3): 367. https://doi.org/10.3390/antiox10030367.

Zafar W, Sumrra S H, Chohan Z H. A review: Pharmacological aspects of metal based 1, 2, 4-triazole derived Schiff bases. European j Medi. Chem. 2021; 222: 113602. ‏ https://doi.org/10.1016/j.ejmech.2021.113602.

Lengacher R, Marlin A, Śmiłowicz D, Boros E. Medicinal inorganic chemistry–challenges, opportunities, and guidelines to develop the next generation of radioactive, photoactivated and active site inhibiting metal-based medicines .Chem. Soc. Rev. 2022; 51(18): 7715-7731.‏ https://doi.org/10.1039/D2CS00407K.

Arraq R R, Hadi A G. Synthesis, identification, and antioxidant activity of di-organotin (IV)-cephalexin complexes. J. Med. Chem. Sci. 2023; 6: 392-401.‏ https://doi.org/10.26655/JMCHEMSCI.2023.2.19.

Albano G, Punzi A, Capozzi M A M, Farinola G M. Sustainable protocols for direct C–H bond arylation of (hetero) arenes. Green Chem. 2022; 24(5):1809-1894.‏ https://doi.org/10.1039/D1GC03168F.

Wang C, Chen F, Qian P, Cheng J. Recent advances in the Rh-catalyzed cascade arene C–H bond activation/annulation toward diverse heterocyclic compounds. Org. Biomol. Chem. 2021; 19 (8): 1705-1721.‏ https://doi.org/10.1039/D0OB02377A.

Zaki M, Hairat S, Aazam E S. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv. 2019; 9 (6): 3239-3278. https://doi.org/10.1039/C8RA07926A.

Ali S, Obaid Q A, Awaid K G. Lemon juice antioxidant activity against oxidative stress. Baghdad Sci. J. 2020; 17(1):207-213.‏ https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0207.

Jabbar A A, Abdulrahman K K, Abdulsamad P, Mojarrad S, Mehmetçik G, Sardar A S. Phytochemical profile, Antioxidant, Enzyme inhibitory and acute toxicity activity of Astragalus bruguieri. Baghdad Sci.J. 2023; 20 (1): 0157-0157. https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0207.

‏ Sadafi Kohnehshahri M, Chehardoli G, Bahiraei M, Akbarzadeh T, Ranjbar A, Rastegari A, et al. Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer’s disease: Quinolotacrine hybrids. Mol. Divers. 2022; 1-15.‏ https://doi.org/10.1007/s11030-021-10307-2.

Zhang Q, Zhang M, Wang H, Tian X, Ma W, Luo L, et al. A series of two-photon absorption organotin (IV) cyano carboxylate derivatives for targeting nuclear and visualization of anticancer activities. J Inorg. Biochem. 2019; 192: 1-6. https://doi.org/10.1016/j.jinorgbio.2018.12.001.

Ruiz-Santaquiteria M, Illescas B M, Abdelnabi R, Boonen A, Mills A, Martí-Marí O, et al. Multivalent Tryptophan‐and Tyrosine‐Containing [60] Fullerene Hexa‐Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors. Chem. Europ. J. 2021; 27(41): 10700-10710. https://doi.org/10.1002/chem.202101098.

Lim S, Choi A H, Kwon M., Joung E J, Shin T, Lee S G, et al. Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food chem. 2019; 278: 178-184. https://doi.org/10.1016/j.foodchem.2018.11.058.

‏Baek S H, Cao L, Jeong S J, Kim H R., Nam T J, Lee S G. The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. J. of Food Quality. 2021; (2021):1-7. https://doi.org/10.1155/2021/6640789.

Yernale N G, Matada B S, Vibhutimath G B, Biradar V D, Karekal M R, Udayagiri M D, et al. Indole core-based Copper (II), Cobalt (II), Nickel (II) and Zinc (II) complexes: Synthesis, spectral and biological study. J. Molecu. Structure. 2022; 1248: 131410.‏ https://doi.org/10.1016/j.molstruc.2021.131410.

Damena T, Alem M B, Zeleke D, Desalegn T, Eswaramoorthy R, Demissie T B. Synthesis, characterization, and biological activities of zinc (II), copper (II) and nickel (II) complexes of an aminoquinoline derivative. Frontiers in Chem. 2022; 10: 1053532. https://doi.org/10.3389/fchem.2022.1053532.

Wu Y, Xia Y, Zhu W, Ma Y, Yan J. Synthesis, and antioxidant activity of novel quinoline derivatives containing benzothiazole moiety. J. Chem. Research. 2020; 44(3): 154-159.

Kim Y, Jeong S, Lee S, Lee M, Kim H. Antioxidant activity and inhibition of α-glucosidase and α-amylase by edible seaweed extracts. Food Sci. Biotech. 2021; 30(6): 859-866.

Apak R, Güçlü K, Özyürek M, Karademir S E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004; 52: 7970−7981 https://doi.org/10.1021/jf048741x.

Ayaz S, Üzer A, Dilgin Y, & Apak R. A novel flow injection amperometric method for sensitive determination of total antioxidant capacity at cupric-neocuproine complex modified MWCNT glassy carbon electrode. Microchim. Acta. 2022; 189(4), 167.‏https://doi.org/10.1007/s00604-022-05271-z

Hadi A G,Yousif E, El-Hiti G A, Ahmed D S, Jawad K, Alotaibi M H, et al. Long-term effect of ultraviolet irradiation on poly (vinyl chloride) films containing naproxen diorganotin (IV) complexes. Molecules. 2019; 24(13): 2396. https://doi.org/10.3390/molecules24132396.

Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials. 2021; 14(15):4135. https://doi.org/10.3390/ma14154135.

Nikitin EA, Shpakovsky DB, Pryakhin AD, et al. Antioxidant activity of modified 2,6-Di-tert-butylphenols with pyridine moiety. Pharm Pharmacol Int J. 2020; 8 (3):122‒134. https://doi.org/10.15406/ppij.2020.08.00288.

Kan L, Oliviero, T, Verkerk R, Fogliano V, & Capuano E. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J. Funct. Foods. 2020; 68, 103924. https://doi.org/10.1016/j.jff.2020.103924. ‏

Gajić I, Stanojević L, Dinić A, Stanojević J, Nikolić L, Nikolić V, et al. The chemical composition of the essential oil and volatile compounds from caraway fruit (Carum carvi L.) extracted by headspace-solid phase microextraction and the antioxidant activity. Adv. Technol. 2020; 9(1), 37-43.‏ https://doi.org/10.5937/savteh2001037G

Bektaşoğlu B, Özyürek M., Güçlü K, Apak R. Hydroxyl radical detection with a salicylate probe using modified CUPRAC spectrophotometry and HPLC. Talanta. 2008; 77.1: 90-97‏. https://doi.org/10.1016/j.talanta.2008.05.043

Bektaşoğlu B, Celik S E, Özyürek M, Güçlü K, Apak R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem. Biophys. Research Comm. 2006; 345(3): 1194-1200. https://doi.org/10.1016/j.bbrc.2006.05.038.

Arraq RR, Kadhim SH. Synthesis and Identification of Co3O4• Fe3O4/CaO Spinel Supported Catalyst. Asian J. Chem. 2018; 30 (11):2502-8. https://doi.org/10.14233/ajchem.2018.21507.

Smolyaninov I V, Poddel’sky A I, Burmistrova D A, Voronina Y K, Pomortseva N P, Polovinkina M A, et al. The Synthesis and Biological Activity of Organotin Complexes with Thio-Schiff Bases Bearing Phenol Fragments. Int. J. Mol. Sci. 2023; 24(9), 8319.‏https://doi.org/10.3390/ijms24098319.

Wang L, Kefalidis C E, Roisnel T, Sinbandhit S, Maron L, Carpentier J F, et al. Structure vs 119Sn NMR chemical shift in three-coordinated tin (II) complexes: experimental data and predictive DFT computations. Organometal. 2015; 34(11): 2139-2150. https://doi.org/10.1021/om5007566.

Ahmad MS, Hussain M, Hanif M, Ali S, Mirza B. Synthesis, chemical characterization and biological screening for cytotoxicity and antitumor activity of organotin (IV) derivatives of 3,4-methylenedioxy 6-nitrophenylpropenoic acid. Molecules. 2007; 12: 2348-2363. https://doi.org/10.3390/12102348.

Akar Z, Küçük M, Doğan H. A new colorimetric DPPH scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzy. Inhib. Med. Chem. 2017; 32(1): 640-647. https://doi.org/10.1080/14756366.2017.1284068.

Bukhari SB, Memon S, Tahir MM, Bhanger MI. Synthesis, characterization and investigation of antioxidant activity of cobalt-quercetin complex. J. Mol. Struct. 2008; 892: 39-46. https://doi.org/10.1016/j.molstruc.2008.04.050.

Devitria R. Uji Aktivitas Antioksidan Ekstrak Metanol Daun Ciplukan menggunakan Metode 2, 2-Diphenyl 1-Picrylhydrazyl (DPPH). J. Penelitian Farm. Indones. 2020; 9 (1):31-36 https://doi.org/10.51887/jpfi.v9i1.800.

Kusuma I M., Veryanti P R., Chairunnisa B. Aktivitas Antioksidan dari Ekstrak Metanol Buah Kawista (Limonia acidissima) dengan Metode DPPH (1, 1-difenil-2-pikrilhidrazil). Sainstech Farma: J Ilmu Kefarmasian. 2020;13(2): 60-65.

Kainama H, Fatmawati S, Santoso M, Papilaya P M, & Ersam T. The Relationship of Free Radical Scavenging and Total Phenolic and Flavonoid Contents of Garcinia lasoar PAM. Pharm. Chem. J. 2020; 53:1151–1157. https://doi.org/10.1007/s11094-020-02139-5

Martinez-Morales F, Alonso-Castro A J, Zapata-Morales J R., Carranza-Álvarez C, Aragon-Martinez O H. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chem. Papers. 2020; 74: 3325-3334. https://doi.org/10.1007/s11696-020-01161-x.

Munteanu I G, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. https://doi.org/10.3390/ijms22073380.

Yeo J, Shahidi F. Revisiting DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: a new IC100 concept to address its limitations. J. Food Bioact. 2019; 7. https://doi.org/10.31665/JFB.2019.7196.

Downloads

Issue

Section

article

How to Cite

1.
Synthesis and Identification of Triorganotin (IV)-Tyrosine Complexes and Study Their Applications as Antioxidant by DPPH and CUPRAC Methods. Baghdad Sci.J [Internet]. [cited 2024 May 19];21(11). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9043