Spectroscopic Analysis Study of Laser-Created Zinc Plasma

Authors

  • Ahmad Z. Al-Jenaby Ministry of Education, Direction of Education in Al-Anbar, Anbar, Iraq.
  • Saadallah F. Hasan Ministry of Education, Direction of Education in Al-Anbar, Anbar, Iraq.
  • Mahmood H. Mayoof Ministry of Education, Direction of Education in Al-Anbar, Anbar, Iraq.
  • Abubaker S. Mohammed Ministry of Education, Direction of Education in Al-Anbar, Anbar, Iraq. https://orcid.org/0000-0003-0256-8460

DOI:

https://doi.org/10.21123/bsj.2024.9078

Keywords:

Density of electron, Electron temperature (T_e), Laser ND:YAG, Spectroscopic analysis, Zinc plasma

Abstract

Through optical emission spectroscopy, zinc (Zn) plasma produced on the basis of a laser can be investigated in the proposed study. Zinc plasma spectral emissions were studied as a function of laser energy (200, 300, 400, and 500) mJ. Record plasma emission with a 100 ns integration time. The spectral lines of zinc were determined, and the electron temperature ( ) and electron density ( ) were studied using Boltzmann diagrams. It is noted from the results that as the laser energies increase, the values of and rise as well, as the values range from eV for electron temperature, while the electron density values range . Also, in this paper, other parameters investigated included Debye length (_D), FWHM, and plasma frequency (fp).

References

Mahdi SS, Aadim KA, Khalaf MA. New Spectral Range Generations from Laser-plasma Interaction. Baghdad Sci J. 2021; 18(4): 1328-1337. https://doi.org/10.21123/bsj.2021.18.4.1328.

Alexander P. An Introduction to Laboratory, Space,and Fusion Plasmas. 1st Edition. Springer-Verlag Berlin Heidelberg, 2010: 409 p.

Semerok A, Commission AE, Petite G. Femtosecond , picosecond , and nanosecond laser microablation : Laser plasma and crater investigation. Laser Part. BeamsCopyright © 2002 Cambridge University Press. 2002; 20(1): 67–72. http://dx.doi.org/10.1117/12.425562.

Yahya E, Bashir M A Bashir, Hussain A, Anjum I, Bahmanrokh G. Rapid fabrication of NiO / porous Si film for ultra-violate photodetector : The effect of laser energy. Microelectron Eng. 2022; 258(1): 1-7 https://doi.org/10.1016/j.mee.2022.111758.

Ali AH, Al-Ahmed H, Mazhir SN, Noori A S. Using Texture Analysis Image Processing Technique to Study the Effect of Microwave Plasma on the Living Tissue. Baghdad Sci J. 2018; 15(1) :87-97 doi: https://doi.org/10.21123/bsj.2018.15.1.0087.

Ibrahim IM, Mohammed AS, Ramizy A. Energy Band Diagram of NiO: Lu2 O3/n-Si heterojunction. Iraqi J Sci. 2018; 59(1): 287–293 https://doi.org/10.24996/ijs.2018.59.1b.6.

Mazhir SN, Abdullah NA, al-Ahmed HI, Harb NH, Abdalameer NK. The Effect of Gas Flow on Plasma Parameters Induced by Microwave. Baghdad Sci J. 2018; 2(2) :205-210. https://doi.org/10.21123/bsj.2018.15.2.0205

Shaikh NM, Rashid B, Hafeez S, Jamil Y, Baig MA. Measurement of electron density and temperature of a laser-induced zinc. J Phys D: Appl Phys. 2006; 39(1): 1384–1391. https://doi.org/10.1088/0022-3727/39/7/008

Kortli Y, Jridi M, Merzougui M, Atri M. Optical face detection and recognition system on low-end-low-cost Xilinx Zynq SoC. Optik. 2020; 217 (5): 164747 https://doi.org/10.1016/j.ijleo.2020.164747.

Abdulhadi OO, Rahmman IA, Obaid A S. Synthesis and characterization of nickel nanoparticles formed by solution cold plasma jet. J Phys: Conf Ser. 2021: 1-12, https://doi.org/10.1088/1742-6596/2114/1/012083.

Shaikh NM, Hafeez S, Kalyar MA, Ali R, Baig MA. Spectroscopic characterization of laser ablation brass plasma. J Appl phys. 2008;104(10). https://doi.org/10.1063/1.3021466.

Harilal SS, O̓Shay B, Tillack MS, Mathew MV. Spectroscopic characterization of laser-induced tin plasma. J Appl phys. 2005; 98(1): 1-7 https://doi.org/10.1063/1.1977200.

Bashir MBA, Salih EY, Rajpar AH, Bahmanrokh G, Sabri MFM. The impact of laser energy on the photoresponsive characteristics of CdO/Si visible light photodetector. J Micromech Microeng. 2022 ; 32(8): 1-8. https://doi.org/10.1088/1361-6439/ac7d93.

Yuan P, Wu DQ, He HP, Lin ZY. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Appl Surf Sci. 2004; 227(1): 30-39 https://doi.org/10.1016/j.apsusc.2003.10.031.

Abdaalameer N Kh, Mazhir SN, Aadim KA. Diagnostics of zinc selenite plasma produced by FHG of a Q-switchedND: YAGlaser. Chalcogenide Lett. 2021; 18(7): 405-411 https://doi.org/10.1134/S0030400X15070127.

Mohamed F, Tawfik W, Omar MM. Investigation on the effects of laser parameters on the plasma profile of copper using picosecond laser induced plasma spectroscopy. Opt Quantum Electr. 2020; 52 : 1-16 https://doi.org/10.1007/s11082-020-02381-x .

Mohammed RS, Aadim KA, Ahmed KA. Spectroscopy diagnostic of laser intensity effect on Zn plasma parameters generated by Nd: YAG laser. Iraqi J Sci. 2022; 63(9): 3711-3718 https://doi.org/10.24996/ijs.2022.63.9.5.

Khidhir AH, Mohammed AH. Using Laser-induced breakdown spectroscopy system to determine the fertility of middle Iraqi soil. Iraqi J Sci. 2018. 59(4): 2012-2019 https://doi.org/10.24996/ijs.2018.59.4B.7.

Pace, DMD, Graciela B, Cristian ADA. Characterization of laser–induced plasmas by atomic emission spectroscopy. J Phys Conf Ser. 2011; 274(1) : 1-21 https://doi.org/10.1088/1742-6596/274/1/012076.

Hutchinson IH. Principles of plasma diagnostics. 2nd Ed . Plasma Phyics and Controlled Fusion. 2012; 44(12): 2603-2613 https://doi.org/10.1088/0741-3335/44/12/701.

Qindeel R, Dimitrijević MS, Shaikh NM, Bidin N, Daud YM. Spectroscopic estimation of electron temperature and density of zinc plasma open air induced by Nd: YAG laser. Eur Phys J-Appl Phys. 2010; 50(3): 30701-7 https://doi.org/10.1051/epjap/2010047.

Downloads

Issue

Section

article

How to Cite

1.
Spectroscopic Analysis Study of Laser-Created Zinc Plasma. Baghdad Sci.J [Internet]. [cited 2024 Jul. 22];22(1). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9078