Studying the Effect of Temperature on the Electrical Properties of Poly (methyl methacrylate) Doped with Lithium chloride
DOI:
https://doi.org/10.21123/bsj.2024.9094Keywords:
Casting technique, Dielectric, Doped polymers, Electrical properties, glass transition temperature, PMMA/LiClAbstract
This article explores the electrical properties of a polymer polymethyl methacrylate (PMMA) doped with lithium chloride (LiCl). In general due to their low electrical conductivity, polymers are common for used as insulating materials. PMMA is one of the polymers that have been widely used in electrical and insulating applications due to its distinguished electrical, dielectric, and optical properties, especially after being impregnated with some materials. One of the key objectives of this study is to develop electrical devices using enhanced polymeric materials. The experimental procedure involved preparing thin film samples using the casting method under normal conditions. PMMA polymer was doped with a 0.2% weight ratio of LiCl. Thin film samples were prepared using the casting method under normal laboratory conditions. The samples were thermally treated at different temperatures then treated samples included within an RCL load circuit connected in parallel. Our investigation focused on evaluating the resistance, capacitance, impedance, and dielectric constant of the PMMA/LiCl material using a load circuit operating at low frequencies and comparing these values with values obtained of pure polymer. The obtained results demonstrated significant enhancements in the electrical properties of the polymer, particularly in terms of charge storage at specific temperatures.
Received 19/05/2023
Revised 30/01/2024
Accepted 01/02/2024
Published Online First 20/08/2024
References
AbdulWahhab NA. Optical properties of SnO2 thin films prepared by pulsed laser deposition technique. J Opt. 2020; 49: 41–47. https://doi.org/10.1007/s12596-020-00587-6
Wu X, Chen X, Zhang QM, and Tan DQ. Advanced dielectric polymers for energy storage. Energy Storage Mater. 2022; 44: 29–47. https://doi.org/10.1016/j.ensm.2021.10.010
Hasan AA. Synthesis and Dielectric Properties of MgO:ZnO Composites. Iraqi J Sci. 2022; 63(12): 5232–5241. https://doi.org/10.24996/ijs.2022.63.12.13
Jaafar HT and Aldabbagh BM. Investigation of Superhydrophobic/Hydrophobic Materials Properties Using Electrospinning Technique. Baghdad Sci J. 2019; 16(3): 632-638. https://doi.org/10.21123/bsj.2019.16.3.0632
Murugadoss K, Gayathiridevi K, Pasupathi1G. Crystallization, Structural and Nonlinear Optical Studies on Bisthiourea Lithium Potassium Sulphate Single Crystal. J Opt. 2016; 45: 136–140. https://doi.org/10.1007/s12596-015-0301-6
Sabbar AN, Azeez BH, and Talib KM. Effect of mixing on the optical parameters of polymer blend (PMMA: PVC: PS) thin films. IOP Conf Ser.: Mater Sci Eng. 2018; 454(012129): 1-9. https://doi.org/10.1088/1757-899X/454/1/012129
Liu Y, Cui T, Varahramyan K. Fabrication and characteristics of polymeric thin-film capacitor. Solid State Electron. 2003; 47(5): 811–814. https://doi.org/10.1016/S0038-1101(02)00392-1
Streibl M, Karmazin R, Moos R. Materials and applications of polymer films for power capacitors with special respect to nanocomposites. IEEE Trans Dielectr Electr Insul. 2018; 25: 2429–2442. https://doi.org/10.1109/TDEI.2018.007392
Syatirah MN, Muhamad NA, Halim KAA, Zakariya MZ, Anuar MNK, and Zaidi AAH. A review: polymer-based insulation material for HVDC cable application. IOP Conf Ser.: Mater Sci Eng. 2020; 932: 012064. https://doi.org/10.1088/1757-899X/932/1/012064
Mansoor RD, Rasheed LM. A Study on The Conductivity of Polyaniline Polymers. IOP Conf. Ser.: Mater Sci Eng. 2019; 571(1): 012087. 10.1088/1757-899X/571/1/012087
Abdel‐karim AM, Salama AH, Hassan ML. Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse. J Phys Org Chem. 2018; 31(9): 1-9. https://doi.org/10.1002/poc.3851
Al Hamade HT, Sabbar AN, Tuhaiwer AS. Temperature effect on electronics properties for alloys GaxIn1-xAs and InP and mole fraction of gallium for alloy GaxIn1-xAs. AIP Conf Proc. 2020; 2213: 020010. https://doi.org/10.1063/5.0000114
Nurullaev EM. Determination of Electrophysical Characteristics of a Polymer Composite Material. J Appl Mech Tech Phy. 2021; 62: 224–229. https://doi.org/10.1134/S002189442102005X
Liu S, Yanjun Z, Kaiyong T, Liping W, Gang C. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal. Fuel Process Tech. 2018; 178: 139- 147. https://doi.org/10.1016/j.fuproc.2018.05.028
Shaban SM. Temperature Dependence of AC Conductivity and Complex Dielectric Constant of Cd2Si1-xGexO4 Compound. Iraqi J Sci. 2023; 56(2B): 1409–1415.
Mahmood SS, Hasan BA. Effect of Dopant Concentration on the Structural, Optical and Sensing Properties of (SnO2)1-x(TiO2:CuO)x Sprayed Films. Baghdad Sci J. 2019; 16(2): 0361. https://doi.org/10.21123/bsj.2019.16.2.0361
Abdel-Baset TA, Alsehli M, Bashal AH. Dielectric properties and AC conductivity for (Nix/Bentonite) composites . J Taibah Univ Sci. 2021; 15(1): 1253-1259. https://doi.org/10.1080/16583655.2022.2027123
Atta AA, El-Nahass MM, Hassanien AM, Elsabawy KM, Abd El-Raheem MM, Alhuthali A et al. Effect of Thermal Annealing on Structural, Optical and Electrical Properties of Transparent Nb2O5 Thin Films. Mater Today Commun. 2017; 13: 112-118. https://doi.org/10.1016/j.physb.2005.03.026
Haider HM, Jasim KA. Effect of Composition and Dielectric Properties for (YBCO) Superconductor Compound in Different Preparation Methods. Ibn aL-Haitham J Pure Appl Sci. 2020; 33(1): 17–30. https://doi.org/10.30526/33.1.2372
Jiang N. Electron beam damage in oxides: a review. Rep Prog Phys. 2015; 79(1). https://doi.org/10.1088/0034-4885/79/1/016501
Yang H, Wang H, Xiang F, Yao X. Dielectric and magnetic properties of SrTiO3/NiZn ferrite/polypropylene composites for high-frequency application. J Ceram. 2008; 116(1351): 418–421. https://dx.doi.org/10.2109/jcersj2.116.418
Chung DDL. Pitfalls and Methods in the Measurement of the Electrical Resistance and Capacitance of Materials. J Electron Mater. 2021; 50: 6567–6574.: https://doi.org/10.1007/s11664-021-09223-w
Honda K, Yoshimura M, Rao TN, Tryk DA, Fujishima A, Yasui K, et al. Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes. J Electroanal Chem. 2001; 514: 35–50. https://doi.org/10.1016/S0022-0728(01)00614-3
Bouaamlat H, Hadi N, Belghiti N, Sadki H, Naciri Bennani M, Abdi F, et al. Dielectric properties, AC conductivity and electric modulus analysis of bulk ethylcarbazole-terphenyl. Adv Mater Sci Eng. 2020; 2020: 1-8. https://doi.org/10.1155/2020/8689150
Zaki HM. AC conductivity and frequency dependence of the dielectric properties for copper doped magnetite. Physica B: Condens Matter. 2005; 363: 232–244. https://doi.org/10.1016/j.physb.2005.03.026
Tyunina M, Pacherova O, Peräntie J, Savinov M, Jelinek M, Jantunen H, et al. Perovskite ferroelectric tuned by thermal strain. Sci Rep. 2019; 9(1): 1–7. https://doi.org/10.1038/s41598-019-40260-y
Sabbar AN, Talib KM, and Badh HT. Effect of Thermal Annealing on The Optical Properties of Thin Films of Polymer Blend (PMMA: PVC: PS). Muthanna J Pure Sci. 2018; 5(1): 1-7. https://doi.org/10.52113/2/05.01.2018/1-7
Sannakki B and Anita. Dielectric properties of PMMA and its composites with ZrO2. Phys. Procedia. 2013; 49: 15–26. https://doi.org/10.1016/j.phpro.2013.10.006
Khan NM, Samsudin AS. Electrical conduction of PMMA/PLA doped lithium bis(oxalato) borate-based hybrid gel polymer electrolyte. Mater Today Proc. 2022; 51(2): 1460-1464. https://doi.org/10.1016/j.matpr.2021.11.655
Mannu P, Palanisamy M, Bangaru G, Ramakrishnan S, Kandasami A, Kumar P. Temperature dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin flms. Appl Phys. A 2019; 125(458): 1-13. https://doi.org/10.1007/s00339-019-2751-1
Jafer HI, Noori FTM, Al-ajaj EA. Electrical and dielectric properties of kevlar - carbon hybrid fiber / epoxy laminated composites. Baghdad Sci J. 2011; 8(1): 148-154. https://doi.org/10.21123/bsj.2011.8.1.148-154
Nlshioka A, Onodera S, Koda T, Mlyata K, Furuichi K, Kodama K, et al. Effect of blended ionomers on the strain hardening of polyester-type elastomer/ionomer blends. Polym J. 2009; 41(8): 661–666. https://doi.org/10.1295/POLYMJ.PJ2009003
Akram M, Javed A, Rizvi TZ. Dielectric properties of industrial polymer composite materials. Turk J Phys. 2005; 29(6): 355–362. Dielectric properties of industrial polymer composite materials | TRDizin
Yang TI, Kofinas P. Dielectric properties of polymer nanoparticle composites. Polym (Guildf). 2007; 48(3): 791–798. https://doi.org/10.1016/j.polymer.2006.12.030
Jeedi VR, Narsaiah EL, Yalla M, Swarnalatha R, Reddy SN, Sadananda CA. Structural and electrical studies of PMMA and PVdF based blend polymer electrolyte. SN Appl Sci. 2020; 2(12): 2093. https://doi.org/10.1007/s42452-020-03868-8
Aljammal YN, Al-Falih RZ AL-Dabbagh ZB. Study of Electrical Properties of Poly Methyl Meth Acrylates (PMMA) under different frequencies and temperatures. J Edu Sci. 2010; 23(3): 107–128. https://doi.org/10.33899/edusj.2010.58371
Chen XY, Romero A, Paton-Carrero A, Lavin-Lopez MP, Sanchez-Silva L, Valverde JL. Functionalized Graphene Nanocomposites and their Derivatives: Synthesis, Processing and Applications. Elsevier, MNT. 2019; chap 7: 121-155 . https://doi.org/10.1016/B978-0-12-814548-7.00007-6
Downloads
Issue
Section
License
Copyright (c) 2024 Laith M. Rasheed , Ali N. Sabbar
This work is licensed under a Creative Commons Attribution 4.0 International License.