Ecofriendly Control for Stored-Product Pest, Oryzaephilus surinamensis (Order: Coleoptera, Family: Silvanidae)
Main Article Content
Abstract
Dates are considered one of the most important foods consumed in Arab countries. Dates are commonly infested with the sawtoothed grain beetle, Oryzaephilus surinamensis. Consequently, the date yield, quantity, and quality (economic value and seed viability) are negatively affected. This study was designed to investigate the effectiveness of air evacuation as eco-friendly and safe control method against adult O. surinamensis. Insects were obtained from the infested date purchased from a private store in sakaka city, Aljouf region, Saudi Arabia. Air evacuation (using a vacuum pump) and food deprivation were applied to O. surinamensis, and insect mortality was observed daily in comparison with the control group (administered both food and air). Application of both air evacuation, and food deprivation, significantly, increased the percentage of daily mortality when compared to control. Percentage accumulative mortality displayed very strong positive correlation with the time course in both cases of air-deprived and food-deprived groups. On the basis of lethal time values, the air evacuation method resulted in a comparable effect of food deprivation. Conclusively, the air-evacuation of the package is a very effective Eco-friendly and safe control method against O. surinamensis.
Received 22/05/2023
Revised 18/08/2023
Accepted 20/08/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Lorini I, Filho AF. Integrated pest management strategies used in stored grain in Brazil to manage phosphine resistance: Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, Gold-Coast Australia, 2007: 293–300. https://api.semanticscholar.org/CorpusID:54850838.
Shewry PR. Improving the protein content and composition of cereal grain. J Cereal Sci. 2007; 46: 239-250. https://doi.org/10.1016/j.jcs.2007.06.006.
Wondatir Z, Adie A, Duncan AJ. Assessment of livestock production and feed resources at Robit Bata, Bahir Dar, Ethiopia. 2015; http://hdl.handle.net/10568/56988.
Fornal J, Jelinski T, Sadowska J, Grunda S, Nawrot J, Niewiada A, et al. Detection of granary weevil Sitophilus granarius (L.) eggs and internal stages in wheat grain using soft X-ray and image analysis. J Stored Prod Res. 2007; 43: 142-148. https://doi.org/10.1016/j.jspr.2006.02.003.
Stejskal V, Hubert J, Aulicky R, Kucerova Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J Stored Prod Res. 2015; 64: 122–132. https://doi.org/10.1016/j.jspr.2014.12.006.
Madrid FJ, White NDG, Loschiavo SR. Insects in stored cereals and their association with farming practices in Southern Manitoba. Can Entomol. 1990; 122: 515-523. https://doi.org/10.4039/Ent122515-5.
White NDG. Insects, Mites and Insecticides in Stored Grain Ecosystems. In: Stored Grain Ecosystem, Jayas D S, N D White and W E Muir (Eds.). Marcel Dekker, New York, USA, 1995: 123-168. https://eurekamag.com/research/031/963/031963878.php.
Padin S, Bello GD, Fabrizio M. Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J Stored Prod Res. 2002; 38: 69-74. https://doi.org/10.1016/S0022-474X(00)00046-1.
Lee S, Peterson CJ, Coats JR. Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res. 2003; 39: 77-85. https://doi.org/10.1016/S0022-474X(02)00020-6.
Mahadevappa Y. Biology and management of rice weevil, Sitophilus oryzae (Linn.) in maize grains. M.Sc. (Agri.) Thesis, University of Agricultural Sciences, Dharwad. 2003. https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Biology+and+management+of+rice+weevil+Sitophilus
Mohale S, Allotey J. Siame BA. Control of Tribolium confusum J. Du val by diatomaceous earth (protect- ittm) on stored groundnut (Arachos hypogaea) and Aspergillus flavus link spore dispersal. Afr J Food Agri Nutr. Develop. 2010; 10(6): 2678-2694. https://doi.org/10.4314/ajfand.v10i6.58060.
Rees DP. Coleoptera. In: Integrated Management of Insects in Stored Products, Subramanyam, B. and D.W. Hagstrum (Eds.). Marcel Decker Inc., New York. 1996; pp: 1-40. https://www.taylorfrancis.com/chapters/edit/10.1201/9780203750612-1/coleoptera-david-rees.
Marcelino DLMP. Plagas de los products Almacenados. Los Artrópodos y el Hombre. 1997; 20: 93-109. http://sea-entomologia.org/aracnet/11/08/
Hashem MY, Ahmed SS, El-Mohandes MA, Gharib MA. Susceptibility of different life stages of sawtoothed grain beetle Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) to modified atmospheres enriched with carbon dioxide. J Stored Prod Res., 2012 ; 48: 46-51. https://doi.org/10.1016/j. jspr.2011.09.002.
James RB. Insects and Hygiene: The Biology and control of insect pests of medical and domestic importance, 3rd Ed. Springer Sci. Business Media, BV, Germany; 1980. https://link.springer.com/book/10.1007/978-1-4899-3198-6.
Arthur HF. Immediate and delayed mortality of Oryzaephilus surinamensis (L.) exposed on wheat treated with diatomaceous earth: effects of temperature, relative humidity, and exposure interval. J Stored Prod Res. 2000; 37(1): 13-21. https://doi.org/10.1016/S0022-474X(99)00058-2.
Robinson WH. Handbook of Urban Insects and Arachnids. Camb Univ Press, Camb., 2009; 490. https://doi.org/10.1017/CBO9780511542718.
Leelaja BC, Rajashekar Y, Rajendran S. Detection of eggs of stored-product insects in flour with staining techniques. J Stored Prod Res . 2007; 43(3): 206-210. https://doi.org/10.1016/j.jspr.2006.05.003.
Throne JE, Doehlert DC, Mcmullen MS. Susceptibility of commercial oat cultivars to Cryptolestes pusillus and Oryzaephilus surinamensis. J Stored Prod Res. 2003; 39 (2): 213-223. https://doi.org/10.1016/S0022-474X(01)00055-8.
Beckel HS, Lorini I, Lazzari SMN. Rearing method of Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) on various wheat grain granulometry. Rev Bras Entomol. 2007; 51(5): 501-505. https://doi.org/10.1590/S0085-56262007000400016.
Hill D. Pests of Crops in Warmer Climates and Their Control. United Kingdom: Springer Science & Business Media; 2008. 284 pages. https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Pests+of+Crops+in+Warmer+Climates+and+Their
Syarifah ZSA, Halim M, Atikah NAR, Yaakop S. Diversity and abundance of storage pests in rice warehouses in Klang, Selangor, Malaysia. Serangga. 2018; 23(1): 89-98. https://ejournals.ukm.my/serangga/article/view/24544.
Aldryhim YN, Adam EE. Use of Radiation and disinfestations in the control of Oryzaephilus surinamensis (L.), A pest of stored dates. J BioSci. 1998; 5(2): 3-11. https://www.researchgate.net/publication/315397973_Use_of_Radiation_Disinfestation_in_the_Control_of_Oryzaephilus_surinamensis_a_Pest_of_Stored_Dry_Dates.
Al-Dosari SA, Suhaibanui MA, Ali AG. Susceptibility of some dry date palm varieties to infestation by Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) in Equation to their chemical composition. Assiut J Agric Sci. 2002; 11: 423–457. https://scholar.google.com/scholar?hl=ar&as_sdt=0,5&cluster=2901659036020542259.
Mallah NA, Sahhito HA, Kousar T, Kubar WA, Shah ZH. Susceptibility of different varieties of stored date palm fruits infested by sawtooth grain beetle, Oryzaephilus surinamensis (L., 1758) under laboratory conditions. J Entomol Zool Stud. 2016a; 4(6): 438-443. https://api.semanticscholar.org/CorpusID:90031973.
Sahhito HA, Mallah NA, Kousar T, Kubar WA, Shah ZH, Jatoi FA, Mangrio WM. Life table parameters of saw toothed grain beetle, Oryzaephilus surinamensis (L., 1758) on different varieties of stored date palm fruits infested under laboratory conditions. J Entomol Zool Stud. 2017; 5(1): 95-99. https://api.semanticscholar.org/CorpusID:91053068.
Latifian M. Integrated pest management of date palm fruit pests: a review. J Entomol. 2017; 14: 112–121. https://doi.org/10.3923/je.2017.112.121.
Nika EP, Kavallieratos NG, Papanikolaou NE. Developmental and reproductive biology of Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) on seven commodities. J Stored Prod Res. 2020; 87: 101612. https://doi.org/10.1016/j.jspr.2020.101612.
Halstead DGH. Keys for the identification of beetles associated with stored products. I—Introduction and key to families. J Stored Prod Res. 1986; 22(4): 163–203. https://doi.org/10.1016/j.jspr.2020.101612.
Finney DJ. Probit Analysis, 3rd ed. Cambridge University Press, New York; 1971; pp: 333. https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Probit+Analysis%2C+3rd+ed.+Cambridge+University+Press%2C+New+York%3B+1971&btnG=
Nurul HA, Amni NM. Food preference of Oryzaephilus surinamensis (Coleoptera: Silvanidae) to different types of plant products. Malays J Halal Res. 2019; 2(2): 53-57. https://doi.org/10.2478/mjhr-2019-0015.
Sahito HA, Mallah NM, Kousar T, Kubar WA, Shah ZH, Jatoi FA, et al. Life table parameters of saw-toothed grain beetle, Oryzaephilus surinamensis (L., 1758) on different varieties of stored date palm fruits infested under laboratory conditions. J entomol zool. 2017; 5(1): 95-99. https://www.entomoljournal.com/archives/2017/vol5issue1/PartB/4-6-89-992.pdf. .
Awadalla HS, Guedes RNC, Hashem AS. Feeding and egg-laying preferences of the sawtoothed grain beetle Oryzaephilus surinamensis: Beyond cereals and cereal products. J Stored Prod Res. 2021; 93(1): 1-8. https://doi.org/10.1016/j.jspr.2021.101841.
Lu B, Ren Y, Du YZ, Fu Y, Gu J. Effect of ozone on respiration of adult Sitophilus oryzae (L.), Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). J Insect Physiol. 2009; 55: 885-889. https://doi.org/10.1016/j.jinsphys.2009.05.014.
Azzam ZS, Sharabi K, Guetta J, Bank EM, Gruenbaum Y. The physiological and molecular effects of elevated CO2 levels. Cell Cycle . 2010; 9(8): 1528–1532. https://doi.org/10.4161/cc.9.8.11196.
Dean JB. Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction. J Appl. Physiol. 2010; 108(6): 1786-1795. https://doi.org/10.1152/japplphysiol.01337.2009.