Investigating the Influence of Precursor Concentration on the Photodegradation of Methylene Blue using Biosynthesized ZnO from Pometia pinnata Leaf Extracts

Main Article Content

Ari Sulistyo Rini
https://orcid.org/0000-0002-5435-2568
Yolanda Rati
Seliana Putri
Rahmi Dewi
https://orcid.org/0000-0003-1689-0231

Abstract

The ZnO nanoparticles were synthesized at various precursor concentrations i.e. 0.05, 0.1, and 0.5 M by biosynthesis method based on Pometia pinnata Leaf Extracts. Initial nanoparticle concentration influenced the optical bandgap, shape, and structure of nanoparticles. The photodegradation process was carried out under UV illumination. The efficiency of MB degradation was determined by measuring the decrease in MB concentration and by analyzing the optical absorption at 663 nm recorded by UV-Vis spectroscopy. Results showed that the biosynthesized ZnO nanoparticles exhibited efficient photodegradation of MB, with a maximum degradation rate of 80% after 90 minutes of exposure to UV-C light. The study highlights the potential of Pometia pinnata leaf extracts as a low-cost and eco-friendly alternative for synthesizing ZnO nanoparticles for use in environmental remediation processes

Article Details

How to Cite
1.
Investigating the Influence of Precursor Concentration on the Photodegradation of Methylene Blue using Biosynthesized ZnO from Pometia pinnata Leaf Extracts. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 19];20(6(Suppl.):2532. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9176
Section
article

How to Cite

1.
Investigating the Influence of Precursor Concentration on the Photodegradation of Methylene Blue using Biosynthesized ZnO from Pometia pinnata Leaf Extracts. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 19];20(6(Suppl.):2532. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9176

References

Asadian M. Thermodynamic Analysis of ZnO Crystal Growth from the Melt. J Cryst Process Technol. 2013 July; 3(3): 75–80. http://doi.org/10.4236/jcpt.2013.33012

Sulciute A, Nishimura K, Gilshtein E, Cesano F, Viscardi G, Nasibulin AG, et al. ZnO Nanostructures Application in Electrochemistry: Influence of Morphology. J Phys Chem C. 2021 January; 125(2): 1472–1482. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c08459

Khadayeir AA, Wannas AH, Yousif FH. Effect of Applying Cold Plasma on Structural, Antibacterial and Self Cleaning Properties of α-Fe2O3 (HEMATITE) Thin Film. Emerg Sci J. 2022; 6(1): 75-85. https://doi.org/10.28991/ESJ-2022-06-01-06

Aranda A, Landers R, Carnelli P, Candal R, Alarcón H, Rodríguez J. Influence of silver electrochemically deposited onto zinc oxide seed nanoparticles on the photoelectrochemical performance of zinc oxide nanorod films. Nanomater. Nanotechnol. 2019 May; 9: 1-9. https://doi.org/10.1177/184798041984436

Cruz DM, Mostafavi E, Crua AV, Barabadi H, Shah V, Diaz JLC, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. J Phys Mater. 2020 May; 3(3): 034005. https://doi.org/10.1088/2515-7639/ab8186

Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Rajeswari VD. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano. 2018 June; 3: 48–55. https://doi.org/10.1016/j.onano.2018.06.001

Perrot C, Ferguson HJ, Mulholland M, Brown A, Buckley C, Humphrey J, et al A. Rendered Services and Dysservices of Dairy Farming to the Territories: A Bottom-up Approach in European Atlantic Area. J Hum Earth Fut. 2022; 3(3): 396-402. https://doi.org/10.28991/HEF-2022-03-03-010

Jalab J, Abdelwahed W, Kitaz A, Al-Kayali R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon. 2021 September; 7(9): e08033. https://doi.org/10.1016/j.heliyon.2021.e08033

Xu J, Huang Y, Zhu S, Abbes N, Jing X, Zhang L. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J Eng Fiber Fabr. 2021 September; 16: 1-14. https://doi.org/10.1177/1558925021104624

Abdullah FH, Bakar NHHA, Bakar MA. Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik. 2020 March; 206: 164279. https://doi.org/10.1016/j.ijleo.2020.164279

Narath S, Koroth SK, Shankar SS, George B, Mutta S, Waclawek S, et al. Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation. Nanomaterials. 2021 June; 11(6): 1558. https://doi.org/10.3390/nano11061558

Abdullah SM, Al-hamdani AAS, Al-zubaidi LA. Water Treatment Using Zinc Nanoparticles and Apricot Plant Extracts from Organic and Inorganic Pollution. Baghdad. Sci J. 2023 May. https://doi.org/10.21123/bsj.2023.7952

Rini AS, Rahayu SD, Hamzah Y, Linda TM, Rati Y. Effect of pH on the morphology and microstructure of ZnO synthesized using ananas comosus peel extract. J Phys Conf Ser. 2021; 2019(1): 012100. https://doi.org/10.1088/1742-6596/2019/1/012100

Munirah Malaka R, Maruddin F. Antioxidant activity of milk pasteurization by addition of Matoa leaf extract (Pometia pinnata). IOP Conf Ser Earth Environ Sci. 2020; 492(1): 012046. https://doi.org/10.1088/1755-1315/492/1/012046

Syarifah S, Imawan C, Handayani W, Djuhana D. Biosynthesis of ferric oxide nanoparticles using Pometia pinnata J. R. Frost. & G. Forst. leaves water extract. AIP Conf Proc. 2018 October; 2023(1): 020054. https://doi.org/10.1063/1.5064051

Sujatmiko F, Sahroni I, Fadillah G, Fatimah I. Visible light-responsive photocatalyst of SnO2/rGO prepared using Pometia pinnata leaf extract. Open Chem. 2021; 19(1): 174-183. https://doi.org/10.1515/chem-2020-0117L

Youcef LD, Belaroui LS, Galindo AL. Adsorption of a cationic methylene blue dye on an Algerian palygorskite. Appl Clay Sci. 2019 October; 179: 105145. https://doi.org/10.1016/j.clay.2019.105145

Ratnawati R, Wulandari R, Kumoro AC, Hadiyanto H. Response surface methodology for formulating PVA/starch/lignin biodegradable plastic. Emerg Sci J. 2022; 6(2): 238-255. https://doi.org/10.28991/ESJ-2022-06-02-03

Yao X, Ji L, Guo J, Ge S, Lu W, Cai L, et al. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption. Bioresour Technol. 2020 April; 302: 122842. https://doi.org/10.1016/j.biortech.2020.122842

Wahlström N, Steinhagen S, Toth G, Pavia H, Edlund U. Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohydr Polym. 2020 December; 249: 116841. https://doi.org/10.1016/j.carbpol.2020.116841

Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016 January; 88: 428–448. https://doi.org/10.1016/j.watres.2015.09.045

Jihoon PC, Park KS Lee, Su-Jeong Suh. Effect of NaOH and precursor concentration on size and magnetic properties of FeCo nanoparticles synthesized using the polyol method. AIP Adv. 2020; 10: 115220. https://doi.org/10.1063/5.0024622

Qian Y, Wei H, Dong J, Yunzhe D, Fang X, Wenhui Z, et al. Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram Int. 2017; 43(14): 10757-10762. https://doi.org/10.1016/J.CERAMINT.2017.05.082

Perillo PM, Atia MN, Rodríguez DF. Studies on the growth control of ZnO nanostructures synthesized by the chemical method. Rev Mater. 2018; 23(2): 1-7. https://doi.org/10.1590/S1517-707620180002.0467

Ridwan M, Fauzia V, Roza L. Synthesis and characterization of ZnO nanorods prepared using microwave-assisted hydrothermal method. IOP Conf Ser Mater Sci Eng. 2019; 496(1): 012018. https://doi.org/10.1088/1757-899X/496/1/012018

Fakhari S, Jamzad M, Fard HK. Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev. 2019 January; 12(1): 19–24. https://doi.org/10.1080/17518253.2018.1547925

Fakayode SO, Baker GA, Bwambok DK, Bhawawet N, Elzey B, Siraj N, et al. Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis. Appl Spectrosc Rev. 2020; 55(8): 647–723. https://doi.org/10.1080/05704928.2019.1631176

Bužarovska A, Dinescu S, Lazar A D, Serban M, Pircalabioru G G, Costache M. et al. Materials Science & Engineering C Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mat Sci Eng C. 2019 November; 104: 109893. https://doi.org/10.1016/j.msec.2019.109893

Candogan K, Altuntas EG, İğci N. Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. Food Eng Rev. 2020 September; 13(1): 66-91. https://doi.org/10.1007/s12393-020-09251-y

Chowdhury MIH, Hossain MS, Azad MAS, Islam MZ, Dewan MA. Photocatalytic Degradation of Methyl Orange Under UV Using ZnO as Catalyst. Int J Sci Eng Res. 2018 June; 9(6): 1646–1649. https://doi.org/10.14299/ijser.2018.06

Fuad A, Fibriyanti AA, Subakti, Mufti N, Taufiq A. Effect of Precursor Concentration Ratio on The Crystal Structure, Morphology, and Band Gap of ZnO Nanorods. IOP Conf Ser Mater Sci Eng. 2017 May; 202(1): 012074. https://doi.org/10.1088/1757-899X/202/1/012074

Ahammed KR, Ashaduzzaman M, Paul SC, Nath MR, Bhowmik S, Saha O, et al. Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN Appl Sci. 2020 April; 2(5): 1–14. https://doi.org/10.1007/s42452-020-2762-8