Biogenic Functionalized ZnO/CuO Nanocomposite Sensor for Potentiometric Determination of Pseudoephedrine-HCl in Pure and Commercial Products

Main Article Content

Fadam M. Abdoon
https://orcid.org/0000-0003-1026-0300
Sarhan A. Salman
Hasan M. Hasan
https://orcid.org/0000-0002-7743-7687
Suham T. Ameen
Maha F. El-Tohamy

Abstract

The ultrafunctional potential of zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) has generated a great interest in using such metal oxides as remarkable and electroactive nanocomposites in the studies on potentiometry and sensors. These nano-oxides were prepared from the extract of Leucaena leucocephala seeds as an environmentally friendly process. The development of a ZnO/CuO “core-shell nanocomposite-modified” coated copper wire film sensor was proposed as a new method for potentiometric determination of pseudoephedrine hydrochloride (PSD) in pure and pharmaceutical dosage forms. With the existence of polyvinyl chloride (PVC) as a polymer with high molecular weight and “o-nitrophenyl octyl ether (o-NPOE) as a solvent mediator”, PSD was combined with phosphotungstic acid (PTA) to produce pseudoephedrine hydrochloride-phosphotungstate (PSD-PT) as a sensing substance. The improved sensor showed a very high sensitivity and selectivity for determining and quantifying the PSD with a linear relationship of 1.0×10-8-1.0×10-2 mol L-1. It was estimated that the regression equation was represented by the EmV = (-58.143) log [PSD] + 526.71. With the proposed sensors, pseudoephedrine hydrochloride could be effectively determined in pure and commercial product forms.

Article Details

How to Cite
1.
Biogenic Functionalized ZnO/CuO Nanocomposite Sensor for Potentiometric Determination of Pseudoephedrine-HCl in Pure and Commercial Products. Baghdad Sci.J [Internet]. 2024 Oct. 1 [cited 2025 Jan. 22];21(10):3134. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9313
Section
article

How to Cite

1.
Biogenic Functionalized ZnO/CuO Nanocomposite Sensor for Potentiometric Determination of Pseudoephedrine-HCl in Pure and Commercial Products. Baghdad Sci.J [Internet]. 2024 Oct. 1 [cited 2025 Jan. 22];21(10):3134. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9313

References

Abdoon FM, Hasan HM, Salman SA, Ameen ST, Birhan M. Exploiting of green synthesized silver nanoparticles using Capparis spinosa L. Fruit for spectrophotometric determination of diphenhydramine HCl in pure forms and commercial products. J Exp Nanosci. 2023; 18(1): 2161525.‏ https://doi.org/10.1080/17458080.2022.2161525

Alarfaj NA, El-Tohamy MF. New functionalized polymeric sensor based nio/mgo nanocomposite for potentiometric determination of doxorubicin hydrochloride in commercial injections and human plasma. Polymers (Basel). 2020; 12(12): 3066.‏ https://doi.org/10.3390/polym12123066

Shetti NP, Malode SJ, Nayak DS, Bagihalli GB, Kalanur SS, Malladi RS, et al. Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl Surf Sci. 2019; 496: 143656. https://doi.org/10.1016/j.apsusc.2019.143656

Shin KY, Mirzaei A, Oum W, Yu DJ, Kang S, Kim EB, et al. Enhancement of selective NO2 gas sensing via Xenon ion irradiation of ZnO nanoparticles. Sens Actuators B Chem. 2023; 374: 132808.‏ https://doi.org/10.1016/j.snb.2022.132808

Saadi H, Benzarti Z, Sanguino P, Pina J, Abdelmoula N, de Melo JSS. Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J Mater Sci.: Mater Electron. 2023; 34(2): 116.‏ https://doi.org/10.1007/s10854-022-09470-5

Dejam L, Kulesza S, Sabbaghzadeh J, Ghaderi A, Solaymani S, Țălu Ștefan, et al. ZnO, Cu-doped ZnO, Al-doped ZnO and Cu-Al doped ZnO thin films: Advanced micro-morphology, crystalline structures and optical properties. Results Phys. 2023; 44: 106209.‏ https://doi.org/10.1016/j.rinp.2023.106209

Zarzuela R, Almoraima Gil ML, Carretero J, Carbú M, Cantoral JM, Mosquera MJ. Development of a novel engineered stone containing a CuO/SiO2 nanocomposite matrix with biocidal properties. Constr Build Mater. 2021; 303: 124459.

https://doi.org/10.1016/j.conbuildmat.2021.124459

Korgaonkar K, Pollet BG, Seetharamappa J, Kalanur SS. Ecofriendly Synthesis of Tenorite (CuO) Nanoparticles Composite with β-cyclodextrin as an Electrochemical Sensor for the Determination of the Anticancer Drug Phloretin. J Electrochem Soc. 2023; 170(6): 067505.

https://doi.org//10.1149/1945-7111/ace009

Thangamani C, Ponnar M, Priyadharshini P, Monisha P, Gomathi SS, Pushpanathan K. Magnetic behavior of Ni-doped CuO nanoparticles synthesized by microwave irradiation method. Surf. Rev. Lett . 2019; 26(5): 1850184.‏https://doi.org/10.1142/S0218625X18501846

Wu Q, He L, Jiang ZW, Li Y, Cao ZM, Huang CZ, et al. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosens Bioelectron. 2019; 145: 111704.‏ https://doi.org/10.1016/j.bios.2019.111704

Mansournia M, Ghaderi L. CuO@ZnO core-shell nanocomposites: Novel hydrothermal synthesis and enhancement in photocatalytic property. J Alloys Compd. 2017; 691: 171-177.‏ https://doi.org/10.1016/j.jallcom.2016.08.267

Rahman MM, Alam MM, Asiri AM, Chowdhury S, Alruwais RS. Sensitive detection of citric acid in real samples based on Nafion/ZnO–CuO nanocomposites modified glassy carbon electrode by electrochemical approach. Mater Chem Phys. 2023; 293: 126975. https://doi.org/10.1016/j.matchemphys.2022.126975

Mubeen K, Irshad A, Safeen A, Aziz U, Safeen K, Ghani T, et al. Band structure tuning of ZnO/CuO composites for enhanced photocatalytic activity. J Saudi Chem Soc. 2023; 27(3): 101639.‏ https://doi.org/10.1016/j.jscs.2023.101639

Alwash A. The Green Synthesize of Zinc Oxide Catalyst Using Pomegranate Peels Extract for the Photocatalytic Degradation of Methylene Blue Dye. Baghdad Sci J. 2020:7(3): 787-794. https://doi.org/10.21123/bsj.2020.17.3.0787.

Del-Toro-Sánchez CL, Rodríguez-Félix F, Cinco-Moroyoqui FJ, Juárez J, Ruiz-Cruz S, Wong-Corral FJ, et al. Recovery of phytochemical from three safflower (Carthamus tinctorius L.) by-products: Antioxidant properties, protective effect of human erythrocytes and profile by UPLC-DAD-MS. J Food Process Preserv. 2021; 45(9): e15765.https://doi.org/10.1111/jfpp.15765

Pandey VC, Kumar A. Leucaena leucocephala: An underutilized plant for pulp and paper production. Genet Resour Crop Evol. 2013; 60(3): 1165-1171.https://doi.org/10.1007/s10722-012-9945-0

Vadapalani Nallasivam L, Gokhale JS. Rheological, techno-functional, and physicochemical characterization of Prosopis cineraria (Sangri) seed gum: A potential food and pharmaceutical excipient. J Food Process Preserv. 2022; 46(5): e16519.

https://doi.org/10.1111/jfpp.16519

Juliantoni Y, Hajrin W, Subaidah WA. Nanoparticle Formula Optimization of Juwet Seeds Extract (Syzygium cumini) using Simplex Lattice Design Method. J. biol. Tropis . 2020; 20(3): 416-422. https://doi.org//10.29303/jbt.v20i3.2124

Chargui H, Ghazghazi H, Essghaier B, Fradj MK Ben, Feki M, Charfi I, et al. Investigation on the Chemical Composition of Phenolic, Fatty Acid Profiles (GC-FID) and Biological Activities from Leucaena leucocephala (Lam de wit) Seed Oil and Leaves Extracts: Effect of Geographical Location and Maturation Stage. Chem. Afr . 2023; 6(2): 819–826. https://doi.org/10.1007/s42250-022-00533-y

Alemán-Ramirez JL, Okoye PU, Torres-Arellano S, Mejía-Lopez M, Sebastian PJ. A review on bioenergetic applications of Leucaena leucocephala. Ind Crops Prod. 2022; 182: 114847 https://doi.org/10.1016/j.indcrop.2022.114847

Głowacka K, Wiela-Hojeńska A. Pseudoephedrine—benefits and risks. Int J Mol Sci. 2022; 22(10): 5146.‏ https://doi.org/10.3390/ijms22105146

Cartwright AC. The British Pharmacopoeia, 1864 to 2014: Medicines, International Standards and the State. The British Pharmacopoeia, 1864 to 2014: Medicines, International Standards and the State, Routledge, London, UK, 2016.

Pourbasheer E, Fathi Majd S, Azari Z, Ansari S, Ganjali MR. Magnetic solid-phase extraction and spectrophotometric determination of pseudoephedrine in real samples. J Chin Chem Soc. 2022; 69(3): 532-539.‏ https://doi.org/10.1002/jccs.202100542

Ali MS, Elsaman T. Development and Validation of the UV Spectrophotometric Method for Simultaneous Determination of Paracetamol and Pseudoephedrine in Bulk and Combined Tablet Dosage Form. Pharm Chem J. 2021; 54(12): 1306-1310.https://doi.org/10.1007/s11094-021-02360-w

Reid IOA. Experimental Design Optimized Chromatographic Determination of Pseudoephedrine and Fexofenadine in Bulk and Tablets. Pharm Chem J. 2023; 56(10): 1426-1432.‏ https://doi.org/10.1007/s11094-023-02808-1

Orman E, Assumang A, Oppong-Kyekyeku J, Onilimor PJ, Peprah PK, Adu JK, et al. Chromatographic method development for the simultaneous assay of pseudoephedrine hydrochloride and chlorphenamine maleate in oral dosage formulations. Sci Afr. 2022; 15: e01109.‏https://doi.org/10.1016/j.sciaf.2022.e01109

Lee S, Shim WS, Yoo H, Choi S, Yoon J, Lee KY, et al. A pharmacokinetic study of ephedrine and pseudoephedrine after oral administration of ojeok-san by validated LC-MS/MS method in human plasma. Molecules. 2021; 26(22): 6991. https://doi.org/10.3390/molecules26226991

Liu YM, Sheu SJ. Determination of ephedrine and pseudoephedrine in Chinese herbal preparations by capillary electrophoresis. J Chromatogr A. 1993; 637(2): 219-223. https://doi.org/10.1016/0021-9673(93)83218-h

Ali MS, Elsaman T. Development and Validation of the UV Spectrophotometric Method for Simultaneous Determination of Paracetamol and Pseudoephedrine in Bulk and Combined Tablet Dosage Form. Pharm Chem J. 2021; 54(12): 107820.

https://doi.org/10.1016/j.microc.2022.107820

Moustafa AA, Hegazy MA, Mohamed D, Ali O. Functionalized Fe3O4 Magnetic Nanoparticle Potentiometric Detection Strategy versus Classical Potentiometric Strategy for Determination of Chlorpheniramine Maleate and Pseudoephedrine HCl. J Anal Methods Chem. 2019; 2019: 6947042. https://doi.org/10.1155/2019/6947042

Banga I, Paul A, Poudyal DC, Muthukumar S, Prasad S. Recent Advances in Gas Detection Methodologies with a Special Focus on Environmental Sensing and Health Monitoring Applications─ A Critical Review. ACS Sens. 2023; 8(9): 3307–3319. https://doi.org/10.1021/acssensors.3c00959

Umapathi R, Ghoreishian SM, Sonwal S, Rani GM, Huh YS. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022;453:214305. https://doi.org/10.1016/j.ccr.2021.214305

Adam H, Gopinath SC, Arshad MM, Adam T, Hashim U, Sauli Z, et al. Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: An overview. J Taiwan Inst Chem Eng. 2023; 146: 104814.https://doi.org/10.1016/j.jtice.2023.104814

Gupta R, Raza N, Bhardwaj SK, Vikrant K, Kim KH, Bhardwaj N. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J Hazard Mater. 2021; 401: 123379. https://doi.org/10.1016/j.jhazmat.2020.123379

Kushwaha CS, Abbas NS, Shukla SK. Chemically functionalized CuO/Sodium alginate grafted polyaniline for nonenzymatic potentiometric detection of chlorpyrifos. Int J Biol Macromol. 2022; 217: 902-909. https://doi.org/10.1016/j.ijbiomac.2022.07.113

Xu J, Huang Y, Zhu S, Abbes N, Jing X, Zhang L. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J Eng Fibers Fabr. 2021; 16: 15589250211046242.https://doi.org/10.1177/15589250211046242

Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HM, et al. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J Mol Liq. 2021; 335: 116567. https://doi.org/10.1016/j.molliq.2021.116567

Tabrizi Hafez Moghaddas SM, Elahi B, Javanbakht V. Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J Alloys Compd. 2020; 821: 153519.‏ https://doi.org/10.1016/j.jallcom.2019.153519

Yulizar Y, Bakri R, Apriandanu DOB, Hidayat T. ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao. Nano-Structures and Nano-Objects. 2018; 16: 300-305.‏ https://doi.org/10.1016/j.nanoso.2018.09.003

Khit SA, Kareem ET, Shaheed IM. Eco-Friendly Synthesized of CuO Nanoparticles Using Anchusa strigosa L. Flowers and Study its Adsorption Activity. Baghdad Sci J. 2023; 20(4): 1322.

https://doi.org/10.21123/bsj.2023.7444

Mohammadi-Aloucheh R, Habibi-Yangjeh A, Bayrami A, Latifi-Navid S, Asadi A. Green synthesis of ZnO and ZnO/CuO nanocomposites in Mentha longifolia leaf extract: characterization and their application as anti-bacterial agents. J Mater Sci.: Mater Electron. 2018; 29(16): 13596-13605.‏

https://doi.org/10.1007/s10854-018-9487-0

Egorov V V., Zdrachek EA, Nazarov VA. Improved separate solution method for determination of low selectivity coefficients. Anal Chem. 2014; 86(8): 3693-3696.‏ https://doi.org/10.1021/ac500439m

Aseel T. Abdul jabbar, Saadiyah A. Dhahir, Waleed M. Abood. Furfural Removal from Simulated Wastewater Using ZnO Nanoparticles / H2O2 in Solar Photocatalysis Reactor. J Phys Conf Ser. 2021; 1818: 012048. https://doi.org/10.1088/1742-6596/1818/1/012048

Siddheswaran R, Jeyanthi CE, Thangaraju K, Mangalaraja RV. Columnar structure growth of Mn-doped ZnO (MZO) thin films by radio frequency co-sputtering and studies on films properties. Mater Technol. 2022; 37(2): 79-85. https://doi.org/10.1080/10667857.2020.1814053

Okubo S, Ozeki Y, Yamada T, Saito K, Ishihara N, Yanagida Y, et al. Facile Fabrication of All-solid-state Ion-selective Electrodes by Laminating and Drop-casting for Multi-sensing. Electrochem. 2022; 90(7): 077001. https://doi.org/10.5796/electrochemistry.22-00020

Wahba ME., Ayman A, Zeid AM., Yasser ES., Draz ME. Portable and green solid contact potentiometric sensor for the rapid and direct assay of clozapine in post-mortem rat liver and dosage forms: An analytical approach to forensic and pharmaceutical samples. Microchem J. 2023; 186: 108364. https://doi.org/10.1016/j.microc.2022.108364

Akl ZF.. Rapid electrochemical sensor for uranium (VI) assessment in aqueous media. RSC Adv. 2022; 12(31): 20147-20155. https://doi.org/10.1039/D2RA02619H

European Medicines Agency. ICH guidelines Q2(R2) on validation of analytical procedures. ICH Harmonised Guideline. 2022; 2(0).

https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline

Dhahir S A. Sunlight photocatalytic degradation of propanil in aqueous solution and determination of degraded products with UV-and HPLC. Asian J Chem. 2012; 24(12): 5490–5492.

Abdoon FM, Khaleel AI, El-Tohamy MF. Utility of electrochemical sensors for direct determination of nicotinamide (B3): Comparative studies using modified carbon nanotubes and modified β-cyclodextrin sensors. Sens Lett. 2015; 13(6): 462-470.‏ https://doi.org/10.1166/sl.2015.3498