A histological study of the black-winged kite's retina (Elanus caeruleus, Desfontaines, 1789)


  • Shaimaa Awad Abid Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq. https://orcid.org/0000-0002-2569-2934
  • Mukhtar Khamis Haba Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq.




deep fovea, diurnal raptor, retina, shallow fovea, visual cells


The study showed the retina of the diurnal invasive raptor Elanus caeruleus is avascular and supplied nutrition and oxygen by the choroid and pecten oculi. The retina includes two layers: the outer layer is called the pigmented epithelium, and the inner layer is the neural layer. The neural layer consists of nine layers: visual cells layer, outer limiting membrane, external nuclear layer, external plexiform layer, internal nuclear layer, internal plexiform layer, ganglion cell layer, nerve fiber layer and inner limiting membrane. The visual cell layer consists of double cones, single cones and rods, and the cones are more than the rods. The external nuclear layer appears to have compact visual cells. The inner nuclear layer is characterized by its diverse and highly compact cells, which consist of bipolar cells, horizontal cells, amacrine cells, and Muller cells. The internal plexiform layer is thicker than the external plexiform layer. The retina contains the deep and shallow fovea. The deep fovea is distinguished by convex walls around the deep and wide pit. The pit of the deep fovea has only thin cones, reduced numbers of cells in the inner nuclear layer, and a lack of ganglion cells. The shallow fovea contains all the retinal layers present at the pit. However, the rows of the inner retinal layer are fewer in number than in the area adjacent to the parafovea.


Potier S. Visual Adaptations in Predatory and Scavenging Diurnal Raptors. Diversity. 2020 Oct; 12(10): 400. https://doi.org/10.3390/d12100400.

Potier S, Mitkus M, Kelber A. Visual adaptations of diurnal and nocturnal raptors. Semin Cell Dev Biol. 2020a Oct; 106: 116-126. https://doi.org/10.1016/j.semcdb.2020.05.004.

Kardong KV. Vertebrates Comparative Anatomy, Function, Evolution. Eighth edition. McGraw-Hill Education. 2019; 682 – 691Pp.

Gali MAH, Dauod HAM. Schedules in comparative anatomy. First edition. Dar Al-Doctor of Science, Baghdad-Iraq. 2021; 414 – 426 Pp.

Gelatt KN, Plummer CE. Essentials of Veterinary Ophthalmology. Fourth edition. Wiley blackwell. 2022; 13 - 58 Pp.

Sugiyama T, Yamamoto H, Kon T, Chaya T, Omori Y, Suzuki Y, et al. The potential role of Arhgef33 RhoGEF in foveal development in the zebra finch retina. Sci Rep. 2020 Dec; 10(1): 21450.

Salim MA, Al-Sudani IM, Haloob A, Abed SA. Invasive Alien Species in Al-Dalmaj Protected Area, Iraq: Conservation and Wildlife Management Approach. Earth Environ Sci. 2021 Jun; 790(1): 012088. https://doi.org/10.1088/1755-1315/790/1/012088.

Abed SA, Salim MA. Breeding observations of the Black-winged Kite Elanus caeruleus (Desfontaines, 1789) in Iraq. Zool Ecol. 2018 Dec; 28(1): 21-24. https://doi.org/10.1080/21658005.2017.1415833.

BirdLife International. Elanus caeruleus. The IUCN Red List of Threatened Species 2019: e.T22695028A152521997. 2019. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22695028A152521997.en. (Accessed on 12 June 2023).

Clark WS, Devies RAG. African raptors (Helm identification guides). Bloomsbury. 2018; 136 – 137 Pp.

Forsman D. Flight identification of raptors of Europe, North Africa and the Middle East. Bloomsbury. 2016; 115 – 118 Pp.

Suvarna SK, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques. Eighth edition. Elsevier. 2019; 40 – 198 Pp.

Yilmaz B, Demircioglu I, Korkmaz D, Alan A, Yilmaz R, Ciris A. Macroanatomic, light and scanning electron microscopic structure of the pecten oculi in northern bald ibis (Geronticus eremita). Anat Histol Embryol. 2021 Mar; 50(2): 373–378. https://doi.org/10.1111/ahe.12641.

Korkmaz D, Demircioglu I, Harem IS,Yilmaz B. Macroscopic and microscopic comparison of pecten oculi in different avian species. Anat Histol Embryol. 2023 Apr: 1–13. https://doi.org/10.1111/ahe.12927.

Sultan AE, Ghoneim AM, El-Gammal HL, El-Bakary NER. Vision adaptation in the laughing dove (Streptopelia senegalensis, Linnaeus, 1766) inferred from structural, ultrastructural, and genetic characterization. J Comp Neurol. 2021 Oct; 529(8): 1830-1848. https://doi.org/10.1002/cne.25059.

Bassuoni NF, Abumandour MMA, El-Mansi A, Hanafy BG. Visual adaptation and retinal characterization of the Garganey (Anas querquedula): Histological and scanning electron microscope observations. Microsc Res Tech. 2022 Feb; 85(2): 607. https://doi.org/10.1002/jemt.23934.

Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Faura G, Eide L, et al. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines. 2023 Jan; 11(2): 310. https://doi.org/10.3390/biomedicines11020310.

Tyrrell LP, Teixeira LBC, Dubielzig RR, Pita D, Baumhardt P, Moore BA, et al. A novel cellular structure in the retina of insectivorous birds. Sci Rep. 2019 Oct; 9: 15230. https://doi.org/10.1038/s41598-019-51774-w.

Victory N, Segovia Y, Garcia M. Cone distribution and visual resolution of the yellow-legged gull, Larus michahellis (Naumann, 1840). Anat Histol Embryol. 2022 Mar; 51(2): 197-214. https://doi.org/10.1111/ahe.12779.

Abid Sh A. A comparative histological study of the retina in two species of Iraqi vertebrates. Iraqi J Agric Sci.. 2017; 48 (6): 1573-1581.

Marc RE. The structure of vertebrate retinas. In: The retinal basic of vision (ed. By Toyoda, J.), Elsevier, Amsterdam. 1998; 33 – 349 Pp.

Marchese NA, Rios MN, Guido ME. Müller glial cell photosensitivity: A novel function bringing higher complexity to vertebrate retinal physiology. J Photochem Photobiol. 2023 Feb; 13: 100162. https://doi.org/10.1016/j.jpap.2023.100162.

Bringmann A. Structure and function of the bird fovea. Anat Histol Embryol. 2019 May; 48(3): 177-200. https://doi.org/10.1111/ahe.12432.

Victory N, Segovia Y, Garcia M. Foveal shape, ultrastructure and photoreceptor composition in yellow‑legged gull, Larus michahellis (Naumann, 1840). Zoomorphology. 2021 Feb; 140: 151–167. https://doi.org/10.1007/s00435-020-00512-2.

Potier S, Mitkus M, Lisney TJ, Isard PF, Dulaurent T, Mentek M, et al. Inter-individual differences in foveal shape in a scavenging raptor, the black kite Milvus migrans. Sci Rep. 2020b Apr; 10: 6133. https://doi.org/10.1038/s41598-020-63039-y.





How to Cite

A histological study of the black-winged kite’s retina (Elanus caeruleus, Desfontaines, 1789). Baghdad Sci.J [Internet]. [cited 2024 Jul. 22];22(1). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9334