Green Innovation in Environmental Remediation: J10-PET Thin Films for Efficient Removal of Methylene Blue and Methyl Orange Contaminants

Authors

  • Jihan A. Mustafa Department of Chemistry, College of Science, University of Duhok, Duhok, Iraq.
  • Parween H. Saleem Department of Chemistry, College of Science, University of Duhok, Duhok, Iraq.
  • Huda A. Basheer Department of Chemistry, Faculty of Science, University of Zakho, Duhok, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.9373

Keywords:

Adsorption, Expired pharmaceuticals, Kinetics, Methylene blue (MB), Methyl orange (MO), PET solid waste, Thin film, Wastewater treatment.

Abstract

This study introduces an innovative approach employing N-(3-benzylureido)(methyl)-2-(6-methoxynaphthalen-2-yl)propanamide (J10) as an additive for recycled polyethylene terephthalate (PET) to produce thin film (J10-PET thin film), with a focus on their application in the removal of methylene blue (MB) and methyl orange (MO) from aqueous solutions. The study is primarily focused on unraveling the kinetics and equilibrium behaviors governing the removal of MB and MO. The investigation includes the determination of the equilibrium adsorption capacities (Qe) of MB and MO at different temperatures (308, 323, and 333 K) and concentrations (5, 10, and 15 mg/g). Remarkably, the pseudo-second-order model is found to best elucidate the adsorption kinetics for both MB and MO. Notably, the J10-PET thin film exhibits promising results with an activation energy of 14.42 kJ/mol for MB and 36.08 kJ/mol for MO, indicating its potential for effective pollutant removal. This research contributes to a comprehensive understanding of adsorption processes and highlights the J10-PET thin film as a promising solution for addressing MB and MO pollutants in aqueous environments.

References

Thamer BM, Aldalbahi A, Moydeen A M, Rahaman M, El-Newehy MH. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polym. J. 2020; 13(1): 20. https://doi.org/10.3390/polym13010020

Chandanshive V, Kadam S, Rane N, Jeon BH, Jadhav J, Govindwar S. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere. 2020; 252. https://doi.org/10.1016/j.chemosphere.2020.126513

El-Kousy SM, El-Shorbagy HG, El-Ghaffar MAA. Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. Mater Chem Phys. 2020; 254. https://doi.org/10.1016/j.matchemphys.2020.123236

Ullah A, Zahoor M, Din WU, et al. Removal of Methylene Blue from Aqueous Solution Using Black Tea Wastes: Used as Efficient Adsorbent. Adsorp Sci Technol. 2022; 2022. https://doi.org/10.1155/2022/5713077

Huynh PT, Nguyen DK, Nguyen PH, Dinh VP. Adsorption of Methyl Orange and Methylene Blue from aqueous solutions using thermally treated biomass of pine leaves (Pinus kesiya). Res Sq. 2023: 1: 1-22. https://doi.org/10.21203/rs.3.rs-2862013/v1

Yasin SA, Abbas JA, Ali MM, Saeed IA, Ahmed IH. Methylene blue photocatalytic degradation by TiO2 nanoparticles supported on PET nanofibres. In: Mater Today Proc. 2020; 20 (4): 482-487. https://doi.org/10.1016/j.matpr.2019.09.174

Ghosh GC, Chakraborty TK, Zaman S, Nahar MN, Kabir AHME. Removal of methyl orange dye from aqueous solution by a low-cost activated carbon prepared from mahagoni (Swietenia mahagoni) Bark. Pollut. 2020; 6(1): 171-184. https://doi.org/10.22059/poll.2019.289061.679

Jedynak K, Repelewicz M, Kurdziel K, Wideł D. Mesoporous carbons as adsorbents to removal of methyl orange (Anionic dye) and methylene blue (cationic dye) from aqueous solutions. Desalin Water Trea. 2021; 220: 363-379. https://doi.org/10.5004/dwt.2021.26925

Yönten V, Sanyürek NK, Kivanç MR. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surf Interfaces. 2020; 20. https://doi.org/10.1016/j.surfin.2020.100529

Yuan N, Cai H, Liu T, Huang Q, Zhang X. Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorp Sci Technol. 2019; 37(3-4): 333-348. http://doi.org/10.1177/0263617419827438

Al-Tohamy R, Ali SS, Li F, Okasha K M, G Mahmoud Y, Elsamahy T, et al. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022; 231: 113160. https://doi.org/10.1016/j.ecoenv.2021.113160

Gao H, Zhao S, Cheng X, Wang X, Zheng L. Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem Eng J. 2013; 223: 84-90. http://dx.doi.org/10.1016/j.cej.2013.03.004

Olisah C, Adams JB, Rubidge G. The state of persistent organic pollutants in South African estuaries: A review of environmental exposure and sources. Ecotoxicol Environ Saf. 2021; 219: 1-18 https://doi.org/10.1016/j.ecoenv.2021.112316

Hevira L, Zilfa, Rahmayeni, Ighalo JO, Aziz H, Zein R. Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions. J Ind Eng Chem. 2021; 97: 188-199. https://doi.org/10.1016/j.jiec.2021.01.028

Soleimani S, Heydari A, Fattahi M, Motamedisade A. Calcium alginate hydrogels reinforced with cellulose nanocrystals for methylene blue adsorption: Synthesis, characterization, and modelling. Ind Crops Prod. 2023; 192: 115999. https://doi.org/10.1016/j.indcrop.2022.115999

Hameed BH, Din ATM, Ahmad AL. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J Hazard Mater. 2007; 141(3): 819-825. http://doi.org/10.1016/j.jhazmat.2006.07.049

Yilmaz E, Guzel Kaya G, Deveci H. Removal of methylene blue dye from aqueous solution by semi-interpenetrating polymer network hybrid hydrogel: Optimization through Taguchi method. J Polym Sci A Polym Chem. 2019; 57(10): 1070-1078.http://doi.org/10.1002/pola.29361

Cheah W, Hosseini S, Khan MA, Chuah TG, Choong TSY. Acid modified carbon coated monolith for methyl orange adsorption. Chem Eng J Adv. 2013; 215-216: 747-754.http://dx.doi.org/10.1016/j.cej.2012.07.004

Cheng X , Jiang D , Chen H , Barati B , Yuan C , Li H, et al. Multi-stage adsorption of methyl orange on the nitrogen-rich biomass-derived carbon adsorbent: DFT and MD evaluation. Chemosphere. 2023; 338: 139218. http://doi.org/10.1016/j.chemosphere.2023.139218

El Gamal M, Mohamed FM, Mekewi MA, Hashem FS, El-Aassar MR, Khalifa RE. Adsorptive removal of methyl orange from aqueous solutions by polyvinylidene fluoride tri-flouro ethylene/carbon nanotube/kaolin nanocomposite: Kinetics, isotherm, and thermodynamics. Desalin Water Treat. 2020; 193: 142-151. http://doi.org/10.5004/dwt.2020.25690

Dehghani MH, Salari M, Karri RR, Hamidi F, Bahadori R. Process modeling of municipal solid waste compost ash for reactive red 198 dye adsorption from wastewater using data driven approaches. Sci Rep. 2021; 11(1): 11613. https://doi.org/10.1038/s41598-021-90914-z

Zaman S, Biswas P, Zaman R, Islam M S, Mehrab M N, Ghosh G C, et al. Jute ( Corchorus olitorius ) stick charcoal: a potential bioadsorbent for the removal of Cr(VI) from an aqueous solution .H2Open J. 2022; 5(4): 656-669. http://doi.org/10.2166/h2oj.2022.027

Mahmood ZA, Farhan AM, Kadhim NJ, Hade MS. Kinetic and Theoretical Study of Removal Gentian Violet from Aqueous Solution Using Stachy Plant. Baghdad Sci J. 2023; 20 (4):1283. http://doi.org/10.21123/bsj.2023.7066

Ahmed FS, AbdulRazak AA, Alsaffar MA. Modelling and optimization of methylene blue adsorption from wastewater utilizing magnetic marble dust adsorbent: A response surface methodology approach. Mater Today Proc. 2022; 60: 1676-1688. http://doi.org/10.1016/j.matpr.2021.12.224

Bassim S, Mageed AK, AbdulRazak AA, Majdi HSh. Green Synthesis of Fe3O4 Nanoparticles and Its Applications in Wastewater Treatment. Inorganics.2022; 10(12): 260. http://doi.org/10.3390/inorganics10120260

Jayasekara SK, Joni HD, Jayantha B, Jayasekara T, Sivakumar P, Jayakody L, et al. Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Comput Struct Biotechnol J. 2023; 21: 3513-3521. https://doi.org/10.1016/j.csbj.2023.06.004

Rahmawati I, Priyanto A, Darsono T, Sulhadi, Aji MP. The adsorption of dye waste using black carbon from polyethylene terephthalate (PET) plastic bottle waste. J Phys Conf Ser. 2019; 1321(2): 022011. http://doi.org/10.1088/1742-6596/1321/2/022011

El Essawy NA, Ali SM, Farag HA, Konsowa AH, Elnouby M, Hamad HA. Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution. Ecotoxicol Environ Saf. 2017; 145: 57-68.http://doi.org/10.1016/j.ecoenv.2017.07.014

Mallakpour S, Behranvand V. Manufacture and characterization of nanocomposite materials obtained from incorporation of D-glucose functionalized MWCNTs into the recycled poly (ethylene terephthalate). Des Monomers Polym. 2016; 19(4): 283-289. http://dx.doi.org/10.1080/15685551.2015.1136533

Djahed B, Shahsavani E, Khalili Naji F, Mahvi AH. A novel and inexpensive method for producing activated carbon from waste polyethylene terephthalate bottles and using it to remove methylene blue dye from aqueous solution. Desalin Water Treat. 2016; 57(21): 9871-9880. http://dx.doi.org/10.1080/19443994.2015.1033647

Abedsoltan H. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. Polym Eng Sci. 2023; 63 (9): 2651-2674. http://doi.org/10.1002/pen.26406

Chakraborty T K, Audhikary K, Ghosh G C, Rahman M S, Habib A, Islam M S, et al. Adsorption of acid and basic dye from the simulated wastewater using carbonized microplastic particles synthesized from recycled polyethylene terephthalate plastic waste bottles: an integrated approach for experimental and practical applications. Aqua Water Infrastruct. Ecosyst. Soc. 2023; 72(4): 491-506. http://doi.org/10.2166/aqua.2023.211

Li S, Cho M K, Yuan X, Deng S , Li H, Zhao L, et al. Cyclic performance evaluation of CO2 adsorption using polyethylene terephthalate plastic-waste-derived activated carbon. Fuel. 2023; 331: 125599. http://doi.org/10.1016/j.fuel.2022.125599

Lin T H, Phat L N, Tu P M, Thang T Q, Khoa B D D, Lam C V, et al. Recycled Polyethylene Terephthalate Fibers Aerogels Modified with Graphene Oxide for Adsorption of Methylene Blue and Coated with Polydimethylsiloxane Tetraethyl Orthosilicate for Oil Removal. J Polym Environ. 2023; 31(2): 648-663. http://doi.org/10.1007/s10924-022-02607-x

Taşçı Y, Kaptanoğlu İG, Sert Ş. Using PET (polyethylene terephthalate) wastes as an adsorbent for Ce(III) and Sr(II) removal from aqueous solution. J Radioanal Nucl Chem. 2023; 332: 4767–4779. http://doi.org/10.1007/s10967-023-08889-2

Soltanolzakerin-Sorkhabi T, Fallahi-Samberan M, Kumaravel V. Antimicrobial Activities of Polyethylene Terephthalate-Waste-Derived Nanofibrous Membranes Decorated with Green Synthesized Ag Nanoparticles. Molecules. 2023; 28(14): 5439.http://doi.org/10.3390/molecules28145439

Oliveira ZM, Teixeira S, Souza E, Souza C, Pessoa R. Reverse Logistics: an approach to raising awareness of the risks caused by the incorrect disposal of expired drugs. DJFM. 2023; 6(1): 21813. http://doi.org/10.55267/djfm/13423

Ojeda L, Oliva J, Oliva AI, Garcia CR. Recycling expired pharmaceutical drugs as redox materials for efficient and sustainable flexible supercapacitors. New J Chem. 2023; 47(21): 10090-10104. http://doi.org/10.1039/D3NJ00497J

Freitas L de AA, Radis-Baptista G. Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. J Xenobiot. 2021; 11(2): 61-76.http://doi.org/10.3390/jox11020005

Diriba G, Hasen G, Tefera Y, Suleman S. Assessment of the magnitude and contributing factors of expired medicines in the public pharmaceutical supply chains of Western Ethiopia. BMC Health Serv Res. 2023; 23(1): 791. http://doi.org/10.1186/s12913-023-09776-y

Mgharbel M, Halawy L, Milane A, Zeaiter J, Saad W. Pyrolysis of pharmaceuticals as a novel means of disposal and material recovery from waste for a circular economy. J Anal Appl Pyrolysis. 2023; 172: 106014. http://doi.org/10.1016/j.jaap.2023.106014

Yasin SA, Abbas JA, Saeed IA, Ahmed IH. The application of green synthesis of metal oxide nanoparticles embedded in polyethylene terephthalate nanofibers in the study of the photocatalytic degradation of methylene blue. Polym Bull. 2020; 77(7): 3473-3484.http://doi.org/10.1007/s00289-019-02919-4

Azhar SMA, Samsudin AS, Ismail WNW, Samah NA. Kinetic Modeling Characterization of Cellulose Modified Surface for Methylene Blue Removal from Aqueous Media. Macromol Symp. 2021; 397(1). http://doi.org/10.1002/masy.202000239

Abdullah AH, Yasin SA, Abdullah SM, Khalaf MY, Saeed IA. A kinetic and isotherm study on removing methylene blue from aqueous solutions by oxidized cellulose nanostructure. Emergent Mater. 2022; 5(4): 1199-1212. http://doi.org/10.1007/s42247-022-00397-5

Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, et al. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N -Methylacetamide Fine Components. ACS Omega. 2020; 5(15): 8572-8578. http://doi.org/10.1021/acsomega.9b04421

Subhash, Chaudhary A, Mamta Jyoti. Synthesis, structural characterization, thermal analysis, DFT, biocidal evaluation and molecular docking studies of amide-based Co(II) complexes. Chem Pap. 2023; 77: 5059–5078 http://doi.org/10.1007/s11696-023-02843-y

Acemioǧlu B. Batch kinetic study of sorption of methylene blue by perlite. Chem Eng J Adv. 2005; 106(1): 73-81. http://doi.org/10.1016/j.cej.2004.10.005

Mohammed FF. Equilibrium, Kinetic, and Thermodynamic Study of Removing Methyl Orange Dye from Aqueous Solution Using Zizphus spina-christi Leaf Powder. Baghdad Sci J. 2023; 20(2): 0296. http://doi.org/10.21123/bsj.2022.7036

Tran T H, Le A H, Pham T H, Nguyen D T, Chang S W, Chung W J, et al. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ. 2020; 725: 138325. http://doi.org/10.1016/j.scitotenv.2020.138325

Ibupoto A S, Qureshi U A, Ahmed F, Khatri Z, Khatri M, Maqsood M, et al. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chem Eng Res Des. 2018; 136: 744-752. http://doi.org/10.1016/j.cherd.2018.06.035

Ahmed HA, Saleem PH, Yasin SA, Saeed IA. A kinetic study of removing methylene blue from aqueous solutions by modified electrospun polyethelene terephthalate nanofibres. Egypt J Chem. 2021; 64(6): 2803-2813. http://doi.org/10.21608/ejchem.2021.54843.3146

de Franco MAE, de Carvalho CB, Bonetto MM, Soares R de P, Féris LA. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J Clean Prod. 2017; 161: 947-956. http://doi.org/10.1016/j.jclepro.2017.05.197

Abdel-Khalek AA, Abdel-Hafeez MM, Mohamed RA, Gabrail EH. Insights into removal of Eriochrome Black-T dye from aqueous solution by Doum fruit as a natural adsorbent. Egypt J Chem. 2022; 65(7): 189-199. http://doi.org/10.21608/ejchem.2021.100948.4692

Thakuria R, Nath NK, Saha BK. The Nature and Applications of π–π Interactions: A Perspective. Cryst Growth Des. 2019; 19(2): 523-528. http://doi.org/10.1021/acs.cgd.8b01630

Jawad AH, Abdulhameed AS. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surf Interfaces. 2020; 18: 100422. http://doi.org/10.1016/j.surfin.2019.100422

Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al. The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ Sci Pollut Res Int. 2012; 19(5): 1464-1484. http://doi.org/10.1007/s11356-011-0709-8.

Downloads

Issue

Section

article

How to Cite

1.
Green Innovation in Environmental Remediation: J10-PET Thin Films for Efficient Removal of Methylene Blue and Methyl Orange Contaminants. Baghdad Sci.J [Internet]. [cited 2025 Jan. 22];22(2). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9373