Chlorophyll Concentration and Its Impact on Electrospun Acrylic Nanofibers

Authors

  • Zainab Jassim Department of Physics, College of Education for Pure Sciences, University of Babylon, Hillah, Iraq.
  • Mohammed Akraa Department of Physics, College of Education for Pure Sciences, University of Babylon, Hillah, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.9381

Keywords:

Chlorophyll Pigment, Electrospinning, Electrospun Nanofiber, Polymer Melts, Polymer Solutions

Abstract

This study explores the properties of electrospun nanofibers of polymethyl methacrylate (PMMA) blended with chlorophyll, which have potential applications in photovoltaic manufacturing. Different chlorophyll concentrations (0, 0.05, 0.1, 0.15, 0.2, and 0.25 wt.%) were added to the electrospinning solutions of PMMA and acetone. After the electrospinning procedure and the evaporation of acetone, the fibers contained the chlorophyll concentrations of (0, 0.31, 0.63, 0.94, 1.25, and 1.56 wt.%). Rheology, Fourier Transformation Infrared Radiation, scanning electron microscopy, and UV-vis spectroscopy characterized the resulting fibers. The results revealed that chlorophyll increased the solution's viscosity and decreased the nanofibers' diameter up to 0.8 wt.%. The most uniform nanofibers were obtained at 0.31 wt.% chlorophyll, with an average diameter of 11.66 ± 7.3 nm. Higher chlorophyll concentrations led to larger and more irregular nanofibers and increased band gap. Chlorophyll concentrations above 1 wt.% produced undesirable fibers with beads. The study determined the optimal range of chlorophyll concentration for PMMA nanofibers (0-0.8 wt.%) and investigated the effect of chlorophyll on the viscosity, diameter, band gap, and morphology of the nanofibers. The study provides useful information for researchers and developers who want to use PMMA/chlorophyll nanofibers for various purposes.

References

Jahan I, Zhang L. Natural Polymer-Based Electrospun Nanofibrous Membranes for Wastewater Treatment: A Review. J Polym Environ. 2022 Nov; 30 (4): 1709–1729. https://doi.org/10.1007/s10924-021-02312-1.

Tahir M, Vicini S, Sionkowska A. Electrospun Materials Based on Polymer and Biopolymer Blends— Rev. Polym. 2023 Mar; 15(7): 1654. https://doi.org/10.3390/polym15071654.

Khadayeir AA, Wannas AH, Yousif FH. Effect of Applying Cold Plasma on Structural, Antibacterial and Self Cleaning Properties of α-Fe2O3 (HEMATITE) Thin Film. Emerg Sci J. 2022 Feb; 6(1): 75-85. https://doi.org/10.28991/ESJ-2022-06-01-06.

Hosseini SM, Esmaeili M. PMMA/chlorophyll composite nanofibrous membranes for the removal of heavy metals from water. J Water Process Eng. 2021 Dec; 41(12): 1-10. https://doi.org/10.1016/j.jwpe.2021.102084.

Nworie FS, Mgbemena N, Ike-Amadi AC, Ebunoha J. Functionalized Biochars for Enhanced Removal of Heavy Metals from Aqueous Solutions: Mechanism and Future Industrial Prospects. J Hum Earth Future. 2022 Sep; 3(3): 1-10. https://doi.org/10.28991/HEF-2022-03-03-09.

Ratnawati R, Wulandari R, Kumoro AC, Hadiyanto H. Response Surface Methodology for Formulating PVA/Starch/Lignin Biodegradable Plastic. Emerg Sci J. 2022 Apr; 6(2): 1-10. https://doi.org/10.28991/ESJ-2022-06-02-03.

Wang M, Wang K, Yang Y, Liu Y, Yu D-G. Electrospun Environment Remediation Nanofibers Using Unspinnable Liquids as the Sheath Fluids: Rev Polym. 2020 Jan; 12(1):103. https://doi.org/10.3390/polym12010103.

Ince Yardimci A, Yagmurcukardes N, Yagmurcukardes M, et al. Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies. Appl Phys A; 2022 Feb; 128 (2): 173. https://doi.org/10.1007/s00339-022-05314-5.

Wang H, Liu Q, Yang Q, Li Y, Wang W, Sun L, et al. Electrospun poly(methyl methacrylate) nanofibers and microparticles. J Mater Sci; 2010 Feb; 45 (3): 1032–1038. https://doi.org/10.1007/s10853-009-4035-1.

Maliszewska I, Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polym. 2022 Apr; 14(9): 1661. https://doi.org/10.3390/polym14091661.

Liu R, Hou L, Yue G, Li H, Zhang J, Liu J, et al. Progress of Fabrication and Applications of Electrospun Hierarchically Porous Nanofibers. Adv Fiber Mater. 2022; 4 (4): 604–630. https://doi.org/10.1007/s42765-022-00132-z

Cao X, Chen W, Zhao P, Yang Y, Yu D-G. Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polym. 2022; 14(19): 3990. https://doi.org/10.3390/polym14193990.

Odularu AT. Basic principles of electrospinning, mechanisms, nanofibre production, and anticancer drug delivery. J Chem. 2022 Apr; 2022(1):1-16. https://doi.org/10.1155/2022/9283325.

Cherubin A, Destefanis L, Bovi M, Perozeni F, Bargigia I, de la Cruz Valbuena G. Encapsulation of photosystem I in organic microparticles increases its photochemical activity and stability for ex vivo photocatalysis. ACS Sustain Chem Eng. 2019 May; 7(12): 10435–44. https://doi.org/10.1021/acssuschemeng.9b00738.

Shanshool HM, Yahaya M, Yunus WMM, Abdullah IY. Investigation of energy band gap in polymer/ZnO nanocomposites. J Mater Sci Mater Electron. 2016 May; 27(11): 9804–9811. https://doi.org/10.1007/s10854-016-5046-8.

Mahmoud RK, Taha M, Zaher A, Amin RM. Understanding the physicochemical properties of Zn–Fe LDH nanostructure as sorbent material for removing of anionic and cationic dyes mixture. Sci Rep. 2021 Nov; 11(1): 1-11. https://doi.org/10.1038/s41598-021-00437-w.

Abdul Jabbar GAH, Saeed AA, Hadi AL-Kadhemy MF. Optical characteristics and bacterial-resistance ability of PVA/ZnO nanocomposites. Kuwait J Sci. 2023 Jul; 50(3): 209–2015. https://doi.org/10.1016/j.kjs.2023.03.004.

Khalil MM, El-Sayed AH, Masoud MS, Mahmoud EM, Hamad MA. Synthesis and optical properties of alizarin yellow GG-Cu (II)-PVA nanocomposite film as a selective filter for optical applications. J Mater Res Technol. 2021 Apr; 11(1): 33–39. https://doi.org/10.1016/j.jmrt.2021.01.102.

Denkov N, Tcholakova S, Politova-Brinkova N. Physicochemical control of foam properties. Curr Opin Colloid Interface Sci. 2020 Dec; 50(6): 101376. https://doi.org/10.1016/j.cocis.2020.08.001.

Amin A-TM, Hamzah WAW, Oumer AN. Thermal conductivity and dynamic viscosity of mono and hybrid organic-and synthetic-based nanofluids: A critical review. Nanotechnol Rev. 2021 Jan; 10(1): 1624–61. https://doi.org/10.1515/ntrev-2021-0086.

Sajjad M, Otsuki A. Coupling flotation rate constant and viscosity models. RSC Adv. 2022; 12(3): 409-417. https://doi.org/10.3390/met12030409.

Sun Y, Cheng S, Lu W, Wang Y, Zhang P, Yao Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019 Dec; 9(44): 25712–25729. https://doi.org/10.3390/polym11122008.

Meyer M, Buchberger G, Heitz J, Baiko D, Joel A-C. Ambient Climate Influences Anti-Adhesion between Biomimetic Structured Foil and Nanofibers. Nanomaterials. 2021 Nov; 11(12): 3222. https://doi.org/10.3390/nano11123222.

Saad EM, El Gohary NA, El-Shenawy BM, Handoussa H, Klingner A, Elwi M. Fabrication of magnetic molecularly imprinted beaded fibers for rosmarinic acid. Nanomaterials. 2020 Jul; 10(8): 1478. https://doi.org/10.3390/nano10081478.

Gabriele PD, Geib JR, Puglisi JS, Reid WJ. Photochemical Degradation and Biological Defacement of Polymers — I. In: Kresta JE, editor. Polymer Additives. Polym Sci Technol, 1984; 26: 83–106. https://doi.org/10.1007/978-1-4613-2797-4_5.

Sillanpaa M, Park Y. Natural Organic Matter in Water: Characterization, Treatment Methods, and Climat Change Impact. Butterworth-Heinemann. 2022 Oct; 26. https://doi.org/10.1016/C2018-0-01701-9.

Puppi D, Pecorini G, Chiellini F. Biomedical processing of polyhydroxyalkanoates. Bioeng. 2019 Nov; 6(4): 108. https://doi.org/10.3390/bioengineering6040108.

Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys Chem Lett. 2018 Dec; 9(28): 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.

Aziz SB, Marif RB, Brza MA, Hassan AN, Ahmad HA. Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: New insights to band gap study. Results Phys. 2019 Jun; 13: 102220. https://doi.org/10.1016/j.rinp.2019.102220.

Kumari LS, George G, Rao PP, Reddy MLP. The synthesis and characterization of environmentally benign praseodymium-doped TiCeO4 pigments. Dyes Pigm. 2008 May; 77(2): 427–31. https://doi.org/10.1016/j.dyepig.2007.07.007.

Ismail LN, Zulkefle H, Herman SH, Rusop Mahmood M. Influence of doping concentration on dielectric, optical, and morphological properties of PMMA thin films. Adv Mater Sci Eng. 2012 Feb; 2012: 5. https://doi.org/10.1155/2012/605673.

Al-Bataineh QM, Ahmad AA, Alsaad AM, Telfah AD. Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model. Heliyon. 2021Jan; 7(1): e05952. https://doi.org/10.1016/j.heliyon.2021.e05952.

Akraa MA, Hasan AS, Kadhim MH. Spectroscopy Characterization of Ethylene Vinyl Acetate Degradation by Different Kinds of Accelerated Aging. Baghdad Sci J. 2020 Sep; 17(3): 795-805. https://doi.org/10.21123/bsj.2020.17.3.0795.

Alkarbouly SM, Waisi BI. Fabrication of Electrospun Nanofibers Membrane for Emulsified Oil Removal from Oily Wastewater. Baghdad Sci. J. 2022 Dec; 19(6): 1238-1248. https://doi.org/10.21123/bsj.2022.6421.

Downloads

Issue

Section

article

How to Cite

1.
Chlorophyll Concentration and Its Impact on Electrospun Acrylic Nanofibers. Baghdad Sci.J [Internet]. [cited 2025 Jan. 22];22(3). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9381