A Comparison of Anti-Citrullniated Peptide Antibody, Lactate Dehydrogenase, Zinc and Copper in Sera of Patients with Rheumatoid Arthritis and Healthy Control: A Cross Sectional Study
DOI:
https://doi.org/10.21123/bsj.2024.9538Keywords:
Anti-Citrullinated Peptide Antibodies, Autoimmunity, Copper, Lactate dehydrogenase, Rheumatoid Arthritis (RA), Synovitis, Zinc.Abstract
Rheumatoid Arthritis (RA) is a chronic, systemic autoimmune disease associated with synovial tissue proliferation, cartilage destruction and pannus formation. The study aimed to determine the link among each anticyvlic anti-citrullinated peptide antibody (ACPA), lactate dehydrogenase (LDH), zinc (Zn), and copper (Cu) levels in rheumatoid arthritis (RA) patients and healthy control. Across sectional study was carried out at the Baghdad Teaching Hospital in Baghdad Iraq, and involved 110 patients (95 females and 15 men), who were matched for age and sex with 40 healthy controls (28 females and 12 males). Patients with RA were diagnosed by a specialist rheumatologist utilizing ACR/EULAR criteria in 2010. According to the type of disease-modifying anti-rheumatic drug therapy used—biologic (bDMARDs), conventional (cDMARDs), and combined (DMARDs)—patients in this study were split into three subgroups. Zn, Cu, and LDH were quantified using a spectrophotometer (AAS), whilst serum ACPA was assessed using an enzyme-linked immunosorbent assay (ELISA). The results showed that there was a significant rise in all subgroups of ACPAs (p<0.001), Zn (p<0.001), and Cu (p<0.001) when compared to the healthy control, but no significant differences across subgroups. LDH levels increased significantly in the chemotherapy and bio-chemotherapy subgroups as compared to healthy controls, but LDH levels decreased significantly in the biology subgroup when compared to the chemotherapy and bio-chemotherapy subgroups. Changing therapy types has no effect on raising levels of ACPA, Zn, and Cu, however, it has an effect on LDH levels. The Biology subgroup showed no significant difference among RA patients subgroup and healthy control.
Received 19/09/2023
Revised 19/02/2024
Accepted 21/02/2024
Published Online First 20/11/2024
References
Bullock J, Rizvi SA, Saleh AM, Ahmed SS, DP Do, Ansari RA, et.al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract. 2019; 27 (6): 501–507. https://doi.org/10.1159/000493390
Gravallese EM, Firestein GS. Rheumatoid Arthritis - Common Origins, Divergent Mechanisms. N Engl J Med. 2023; 388(6): 529-542.https://doi.org/10.1056/NEJMra2103726.
Almutairi K, Nossent J, Preen D, Keen H, Inderjeeth C. The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatol Int. 2021; 41: 863–877.
Al-Rawi ZS, Alazzawi AJ, Alajili FM, Alwakil R. Rheumatoid arthritis in population samples in Iraq. Ann Rheum Dis. 1978; 37(1):73-75.https://doi.org/10.1136%2Fard.37.1.73.
Camille Brewer, Tobias V Lanz, Caryn R Hale, Gregory D Sepich-Poore, Cameron Martino, Austin D Swafford, et.al. Oral mucosal breaks trigger anti-citrullinated bacterial and human protein antibody responses in rheumatoid arthritis. Sci Transl Med. 2023; 15(684): 76-84.https://doi.org/10.1126/scitranslmed.abq8476.
Studenic P, Alunno A, Sieghart D, Bang H, Aletaha D, Blüml S. et.al. Presence of anti-acetylated peptide antibodies (AAPA) in inflammatory arthritis and other rheumatic diseases suggests discriminative diagnostic capacity towards early rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2021; 13: 1–15. https://doi.org/10.1177/1759720X211022533
Sokolova MV, Schett G, Steffen U. Autoantibodies in rheumatoid arthritis: historical background and novel findings. Clinic Rev Allerg Immunol. 2022; 63: 138–151.https://doi.org/10.1007/s12016-021-08890-1
Yi Wu CH, Yu Yang H, Haung Lai J. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci. 2020; 21(11): 1-23. https://doi.org/10.3390/ijms21114015.
Scherer HU, van der Woude D, Toes R E M. From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol. 2022; 18: 371–383. https://doi.org/10.1038/s41584-022-00786-4
Farhana A, Lappin SL. Biochemistry, Lactate Dehydrogenase. In: StatPearls Publishing, Treasure Island (FL). Europe PMID. 2022: 32491468. https://europepmc.org/article/nbk/nbk557536#free-full-text
Manosalva C, Quiroga J, Hidalgo AI, Alarcon P, Anseoleaga N, Hidalgo MA. et.al. Role of lactate in inflammatory processes: Friend or foe. Front Immunol. 2022; 12: 799- 808. https://doi.org/10.3389/fimmu.2021.808799.
Ma Y, Zhang Xu, Fan D, Xia Q, Wang M, Pan F. Common trace metals in rheumatoid arthritis: A systematic review and meta-analysis. J Trace Elem Med Biol. 2019; 56: 81-89. https://doi.org/10.1016/j.jtemb.2019.07.007.
Frangos T, Maret W. Zinc and cadmium in the aetiology and pathogenesis of osteoarthritis and rheumatoid arthritis. Nutrients. 2021; 13(1): 23-45. https://doi.org/10.3390/nu13010053.
Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, De Oliveira AR. Zinc and oxidative stress: current mechanisms. Antioxidants. 2017; 6(2): 1124-1129. https://doi.org/10.3390/antiox6020024.
Mirończuk-Chodakowska I, Socha K, Zujko ME, Terlikowska KM, Borawska MH, Witkowska AM. Copper, Manganese, Selenium and Zinc in Wild-Growing Edible Mushrooms from the Eastern Territory of “Green Lungs of Poland”: Nutritional and Toxicological Implications. Int J Environ Res Public Health. 2019; 16(19): 14-36.https://doi.org/10.3390/ijerph16193614.
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, et.al. Post-translational protein acetylation: an elegant mechanism for bacteria to dynamically regulate metabolic functions. Front Microbiol. 2019; 10: 1604-1626. https://doi.org/10.3389/fmicb.2019.01604.
Kurowska W, Kuca-Warnawin EH, Radzikowska A, Maśliński W. The role of anti-citrullinated protein antibodies (ACPA) in the pathogenesis of rheumatoid arthritis. Centr Eur J Immunol. 2017; 42 (4): 390-398. https://doi.org/10.5114/ceji.2017.72807.
Sonigra A, Nel HJ, Wehr P, Ramnoruth N, Patel S, van Schie KA, et.al. Thomas R. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight. 2022; 7(20): 1-17. https://doi.org/10.1172/jci.insight.160964.
Van Gaalen FA, Van Aken J, Huizinga TW, Schreuder GM, Breedveld FC, Zanelli E, et.al. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheumatol. 2004; 50: 2113-2121. https://doi.org/10.1002/art.20316.
Zhang P, Zhang X, Xu F, Xu W, Zhu H. Elevated expression of interleukin-27, IL-35, and decreased IL-12 in patients with thyroid-associated ophthalmopathy. Graefes Arch Clin Exp Ophthalmol. 2023; 261: 1091–1100. https://doi.org/10.1007/s00417-022-05856-7.
Chirivi RG, van Rosmalen JW, van der Linden M, Euler M, Schmets G, Bogatkevich G, et.al. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol. 2021; 18: 1528–1544. https://doi.org/10.1038/s41423-020-0381-3.
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD open. 2021; 7 (1): 1-9. https://doi.org/10.1136/rmdopen-2020-001228.
Malmström V, Grönwall C. The parallel worlds of ACPA-positive and RF-positive B cells. Nat Rev Rheumatol.2018; 14:626–628. https://doi.org/10.1038/s41584-018-0094-5.
Jonsson MK, Hensvold AH, Hansson M, Aga AB, Sexton J, Mathsson-Alm L, et.al. The role of anti-citrullinated protein antibody reactivities in an inception cohort of patients with rheumatoid arthritis receiving treat-to-target therapy. Arthritis Res Ther. 2018; 20: 1-11. https://doi.org/10.1186/s13075-018-1635-7
Al-Ani N, Gorial F, Yasiry D, Al Derwibee F, Abbas Humadi Y, Sunna N, et.al. Clinical Outcomes in Iraqi Patients with Rheumatoid Arthritis Following Earlier or Later Treatment with Etanercept. Open Access Rheumatol.: Res Rev. 2021; 13: 57-62. https://doi.org/10.2147/OARRR.S300838.
Niitsu N, Okamoto M, Nakamine H, Hirano M. Clinicopathologic correlations of diffuse large B‐cell lymphoma in rheumatoid arthritis patients treated with methotrexate. Cancer Sci. 2010; 101(5): 1309-1313. https://doi.org/10.1111/j.1349-7006.2010.01517.x
Wang Q, Asenso J, Xiao N, Gao J, Xiao F, Kuai J, et.al. Lactic Acid Regulation: A Potential Therapeutic Option in Rheumatoid Arthritis. J Immunol Res. 2022; 2022: 1-11. https://doi.org/10.1155/2022/2280973.
Al-Hindawi M, Al-Gebori A, Alosami M. Tenascin-C and Interleukin-17 Up-regulation in Axial Spondyloarthritis Patients. Rheumatology (Bulgaria).2023; 30(4): 3-11. https://doi.org/10.35465/30.4.2022.pp3-11.
Xin L, Yang X, Cai G, Fan D, Xia Q, Liu L,et.al. Serum levels of copper and zinc in patients with rheumatoid arthritis: a meta-analysis. Biol Trace Elem Res .2015; 168: 1–10. https://doi.org/10.1007/s12011-015-0325-4.
Al-Timimi DJ, Al-Sharbatti SS, Al-Najjar F. Zinc deficiency among a healthy population in Baghdad, Iraq. Saudi Med J. 2005; 26(11): 1777-1781. https://europepmc.org/article/med/16311665
Liu Y, Zhu J, Xu L, Wang B, Lin W, Luo Y. Copper regulation of immune response and potential implications for treating orthopedic disorders. Front Mol Biosci. 2022; 9: 1065265. https://doi.org/10.3389/fmolb.2022.1065265 .
Oleiwi Ahmed R, ZGAIR Ayaid Khadem. Estimation levels of CTHRC1and some cytokines in Iraqi patientswith Rheumatoid Arthritis. Baghdad Sci J. 2023; 20(3): 928-936. https://doi.org/10.21123/bsj.2023.8036.
Findeisen KE, Sewell J, Ostor AJ. Biological therapies for rheumatoid arthritis: an overview for the clinician. Biol: Targets Ther. 2021; 15: 343-352. https://doi.org/10.2147/BTT.S252575.
Halestrap AP, Wilson MC. The monocarboxylate transporter family—role and regulation. IUBMB life. 2012; 64(2): 109-119. https://doi.org/10.1002/iub.572.
Cunningham KY, Hur B, Gupta VK, Arment CA, Wright KA, Mason TG, et.al.Patients with ACPA-positive and ACPA-negative rheumatoid arthritis show different serological autoantibody repertoires and autoantibody associations with disease activity. Sci Rep. 2023; 13: 5360. https://doi.org/10.1038/s41598-023-32428-4.
Mohammed N U G, Khaleel F M and Gorial F I. The Role of Serum Chitinase-3-Like 1 Protein (YKL-40) Level and its Correlation with Proinflammatory Cytokine in Patients with Rheumatoid Arthritis. Baghdad Sci J. 2022; 19(5): 1014-1020. http://dx.doi.org/10.21123/bsj.2022.6293.
Downloads
Issue
Section
License
Copyright (c) 2024 Fatima Qasim AL-Obaidy, Abdulnasser M. Al-Gebori, Mohammed Hadi Munshed Alosami
This work is licensed under a Creative Commons Attribution 4.0 International License.