Synthesis and photocatalytic applications of TiO2-CQDs nanocomposites prepared by biological methods

Authors

  • Maryam S. Jabbar Department of Physics, College of Science, University of Diyala, Diyala, Iraq.
  • Olfat A. Mahmood Department of Physics, College of Science, University of Diyala, Diyala, Iraq.
  • Zainab N. Jameel Communication Engineering Department, University of Technology, Baghdad, Iraq.
  • Noor. J. Jihad Communication Engineering Department, University of Technology, Baghdad, Iraq. https://orcid.org/0000-0002-5373-605X

DOI:

https://doi.org/10.21123/bsj.2024.9549

Keywords:

Anatase, Carbon quantum dots (CQDs), Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HRTEM), Titanium oxide (TiO2), X-Ray diffraction (XRD).

Abstract

In this study, CQDs were synthesized by the green method using orange juice and ethanol, confused at a relatively low temperature by hydrothermal carbonization process, TiO2 were prepared by a facile sol-gel method, and TiO2-CQDs nanocomposites with different weight ratios were prepared by slipe mixing and heat treatment. XRD showed that the CQDs exhibited a broad peak at (002) with hexagonal structure, and TiO2 (anatase phase) had a polycrystalline nature with tetragonal structure. The FESEM results showed the formation of nanostructures with different shapes and small average particle size. High-resolution transmission electron microscopy revealed that the TiO2 (anatase phase) agglomerated in mostly spherical shapes and sizes less than 15 nm. The CQDs had a relatively uniform diameter, a spherical shape with a highly crystalline structure, and a size below 5 nm.  . The FTIR spectra of TiO2 NPs, CQDs, and TiO2-CQDs nanocomposite showed the presence of a broad band at 450–4000 cm-1, which corresponded to the stretching vibration of terminating hydroxyl groups in samples. The results of UV-visible spectroscopy showed that the absorbance of TiO2-CQDs nanocomposite increased with the increase in the CQDs rate, and the optical energy band gap of TiO2 and CQDs was 3.14 ev and 3.07 eV, respectively. The energy band gap values of TiO2-CQDs nanocomposite decreased with the increase in the CQDs rate in the range of (2.72-1.85) eV. The performance of the Photocatalytic was shown by decreasing methylene blue (MB) and methyl orange (MO) under UV irradiation. The results showed that the TiO2-CQDs nanocomposite with different weight ratios had higher photocatalytic efficiency than TiO2 NPs, and the photocatalytic efficiency increased with the increase in the CQDs rate. The degradation efficiencies of MB and MO were high at 84% and 39% within 240 min, respectively.

References

Damjan B, Julio C, Nikola K, Andrea J, Janez Z, Ander J, at el. Photodegradation of Methylene Blue and Rhodamine B Using Laser-Synthesized ZnO Nanoparticles. J Mater. 2020. Sep; 13 (19): 4357. https://doi.org/10.3390/ma13194357.

Al-Rawi KR, Taha SK. The Effect of nano particles of TiO2-Al2O3 on the Mechanical properties of epoxy Hybrid nanocomposites. Baghdad Sci J. 2015 Sep. 6; 12(3): 597-602.https://doi.org/10.21123/bsj.2015.12.3.597-602

Catalina N D, Consuelo G D, Gabriela A, Apostolescu G C, Doina L, Lidia F, at el . Enhancing the TiO2-Ag Photocatalytic Efficiency by Acetone in the Dye Removal from Wastewater. Water. 2022. Agu; 14 (17): 2711. https://doi.org/10.3390/w14172711.

Subramanian K. Radhakrishnan V. Photocatalytic Degradation of Organic Dyes by PEG and PVP Capped Cu, Ni and Ag Nanoparticles in the Presence of NaBH4 in Aqueous Medium. J Water Environ Nanotechnol. 2020. Aut; 5(4): 294-306. https://doi.org/10.17577/IJERTCONV4IS03004.

Ahmed M, Ibrahim M, Moustafa S A, Ehab K E ,Khalaf F, Mohamed S, at el. Advanced Oxidation Processes UsingZinc Oxide Nanocatalyst for Detoxification of Some Highly Toxic Insecticides in an Aquatic System Combined With Improving Water Quality Parameters. Front Environ Sci. 2022. Mar; 10: 1-14. https://doi.org/10.3389/fenvs.2022.807290.

Saadiyah A D, Enass A H, Asaad H S, Mouna S. Removal Color Study of Toluidine Blue dye from Aqueous Solution by using Photo-Fenton Oxidation. Baghdad Sci J. 2016. (2s(Supplement)); 13: 440-446. https://doi.org/10.21123/bsj.2016.13.2.2NCC.0440.

Mahendra K, Jean M F, Brian J F, Bindu K, Ramesh K P. Photocatalytic degradation of organic textile dyes using tellurium-based metal alloy. Vacuum. 2022. May; 199: 110960. https://doi.org/10.1016/j.vacuum.2022.110960.

Abdessalam B, Brahim A, Elhassan A, Bahcine B, Aziz T, Sylvie V, at el .Photo degradation under UV Light Irradiation of Various Types and Systems of Organic Pollutants in the Presence of a Performant BiPO4 Photocatalyst. J Catalysts. 2022. Jun; 12: 3-19. https://doi.org/10.3390/catal12070691.

Noor A M, Abeer I A, Mohammed S S. Photocatalytic Degradation of Reactive Yellow Dye in Wastewater using H2O2/TiO2/UV .Technique. Iraqi J Chem Pet Eng. 2020. Mar; 21 (1): 15-21. https://doi.org/10.31699/IJCPE.2020.1.3.

Zimi S C, Shirini F. Advanced Oxidation Process as a Green Technology for Dyes Removal from Wastewater: A Review. Iran J Chem Chem Eng. 2021. Sep; 40(5): 1467-1489. https://doi.org/10.30492/ijcce.2020.43234

Dorcas M, Raymond T, Taziwa Lindiwe K. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. Nanomaterials. 2022. Des; 12: 4469. https://doi.org/10.3390/nano12244469.

Padmavathy N, Narasimha B M, Hemakumar K H. Direct Sunlight driven photocatalytic degradation of hazardous organic dyes using TiO2-NiO nanocomposite p-n junction. J Phy Conf Ser . 2021. Agu; 2070: 012044. https://doi.org/10.1002/jctb.1553.

Santiago E, Daniele M B, Luiz Gustavo T K, Márcia D. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater. 2007. Nov; 149 (3): 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073.

Johnson M B, Mehrvar M. Aqueous Metronidazole degradation by UV/H2O2 process in singleand multi-lamp tubular photoreactors: Kinetics and reactor design. Ind Eng Chem Res. 2008. Aug; 47 (17): 6525- 6537. https://doi.org/10.1021/ie071637v.

Peternel I, Koprivanac N. Kusic H. UV- Based process for reactive azo dye mineralization, J Water Res. 2006. Feb; 40 (3) :525-532. https://doi.org/10.1016/j.watres.2005.11.029.

Murugandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes Pigm. 2004. Sep; 62 (3): 269-275. https://doi.org/10.1016/J.DYEPIG.2003.12.006.

Carla A Silva, Luis M. Madeira, Rui A. Boaventura, Carlos A.Costa. Photo-oxidation of cork manufacturing wastewater. Chemosphere. 2004; 55: 19. https://doi.org/10.1016/j.chemosphere.2003.11.018.

Souad A M, Sanaa T, Eman A M. .Studying the Photodegradation of Congo Red Dye from Aqueous Solutions Using Bimetallic Au–Pd/TiO2 Photocatalyst. Baghdad Sci J. 2021. Des; 18(4): 1261-1268. http://dx.doi.org/10.21123/bsj.2021.18.4.1261.

Ghoreishi S M, Haghighi R. Chemical catalytic reaction and biological oxidation for treatment of the of non-biodegradable textile effluent. J Chem Eng. 2003. Sep; 95 (1- 3): 163-169. https://doi.org/10.1016/S1385-8947(03)00100-1.

Vetriselvan K, Sudhagar P, Ajay K K, Gomathipriya P. Photocatalytic Degradation of Synthetic Organic Reactive Dye Wastewater Using GO-TiO2 Nanocomposite. Pol J Environ Stud. 2020. Apr; 29 (2): 1683-1690. https://doi.org/10.15244/pjoes/109027.

Luiz E N, Eduardo C M, Helton J A, Marco A R, Erika C V, Leda M S. Braz Arch Biol Technol. 2020; 63: 1-15. https://doi.org/10.1590/1678-4324-2020180573.

Yi-Hsuan C, Tso-Fu M C, Chun-Y C, Masato S, Yung J H. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019. May; 9 (5): 430. https://doi.org/10.3390/catal9050430.

Deivanai S K, Kanmani S. Photocatalytic degradation of reactive dyes and real textile composite wastewater using TiO2/MWCNT nanocomposite under UVA and UVA-LED irradiation. A comparative study. J Environ Prot Eng. 2019. May; 45: 95-116. https://doi.org/10.5277/epe190207.

Ganjar F, Muhamad A S. Preliminary Study of Photocatalytic Degradation of Methylene Blue Dye using Magnetic Alginate/Fe3O4 (Alg/Fe3O4) Nanocomposites. Eksakta: Int J Data Sci Anal. 2019. Jan; 19 (1): 26-34 https://doi.org/10.20885/eksakta.vol19.iss1.art3.

Galindo C, Kalt A. UV/ H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study. Dyes Pigm. 1998. Jan; 40 (1): 27-35. https://doi.org/10.1016/S0143-7208(98)00027-8.

Mustafa M K, Abbas W S, Ameerah M Z, Wesam R K. .Inhibition of SARS-CoV-2 reproduction using Boswellia carterii: A theoretical study. J Mole Liq. 2021. Sep; 337: 116440. https://doi.org/10.1016/j.molliq.2021.116440.

Noor A K, Mustafa M K, Anees A K. Effect of Trimethoprim drug dose on corrosion behavior of stainless steel in simulated human body Environment: Experimental and theoretical investigations. J Bio Tribo-Corros. 2021. Sep; 7(124): 1-15. https://doi.org/10.1007/s40735-021-00559-8.

Ayodeji O I, Akeem A O, Mustafa G. Sun-light driven enhanced azo dye decontamination from aqueous solution. Desalin Water Treat. 2020. Feb; 177: 423–4304. https://doi.org/10.5004/dwt.2020.25247.

Sahani S, Sharma YC. Advancements in applications of nanotechnology in global food industry. Food Chem. 2021; 342: 128318. https://doi.org/10.1016/j.foodchem.2020.128318

Negi G, Anirbid S, Sivakumar P. Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges. J Pet Sci Res. 2021; 6(3): 224-46. https://doi.org/10.1016/j.ptlrs.2021.03.001

Shaker DS, Abass NK, Ulwall RA. Preparation and study of the Structural, Morphological and Optical properties of pure Tin Oxide Nanoparticle doped with Cu. Baghdad Sci J. 2022; 19(3): 0660-. https://doi.org/10.21123/bsj.2022.19.3.0660

Visaveliya NR, Mazetyte‐Stasinskiene R, Köhler JM. Stationary, Continuous, and Sequential Surface‐Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymer‐Metal Composite Sensor Particles through Microfluidics: A Review. Adv Opt Mater. 2022: 2102757. https://doi.org/10.1002/adom.202102757

Pourpasha H, Zeinali Heris S, Mohammadfam Y. Comparison between multi-walled carbon nanotubes and titanium dioxide nanoparticles as additives on performance of turbine meter oil nano lubricant. Sci Rep. 2021; 11(1): 1-19. https://doi.org/10.1038/s41598-021-90625-5

Hakeem HS, Abbas NK. Preparing and studying structural and optical properties of Pb1-xCdxS nanoparticles of solar cells applications. Baghdad Sci J. 2021; 18(3): 0640-. https://doi.org/10.21123/bsj.2021.18.3.0640

Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules; 2021; 12(1): 31. https://doi.org/10.3390/biom12010031

Grujić-Brojčin M, Šćepanović M, Dohčević-Mitrović Z, Popović Z. Infrared study of nonstoichiometric anatase TiO2 nanopowders. Sci Sinter. 2006; 38(2): 183-9. https://doi.org/10.2298/SOS0602183G

Rahma A, Oleiwi H, Khaleel S, Mutter M, editors. Morphology, Structure, and Optical Properties of ZnO nanorods/Eosin-y Grown via Microwave-assisted Hydrothermal Method. IOP Conf Ser: Mater Sci Eng. 2021; 1095: 012007: IOP Publishing. https://doi:10.1088/1757-899X/1095/1/012007

Kozuka H, Kuroki H, Sakka S. Flow characteristics and spinnability of sols prepared from silicon alkoxide solution. J Non Cryst Solids 1988; 100(1-3): 226-30. https://doi.org/10.1016/0022-3093(88)90022-1

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011; 13(10): 2638-50. https://doi:10.1039/C1GC15386B.

Hassan AK, Atiya MA, Luaibi IM. A Green Synthesis of Iron/Copper Nanoparticles as a Catalytic of Fenton-like Reactions for Removal of Orange G Dye. Baghdad Sci J. 2022; 19(6): 1249-1264. https://doi.org/10.21123/bsj.2022.6508

Rao KG, Ashok C, Rao KV, Chakra CS, Rajendar V. Synthesis of TiO2 nanoparticles from orange fruit waste. Int J Adv Multidiscip Res. 2015; 2(1): 1. https://doi.org/10.1039/C1GC15386B

Davar F, Majedi A, Mirzaei A. Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J Am Ceram Soc. 2015; 98(6): 1739-46. https://doi.org/10.1111/jace.13467

Girisuta B, Janssen L, Heeres H. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem. 2006; 8(8): 701-9. https://doi.org/10.1039/B518176C

Rao KG, Ashok C, Rao KV, Chakra C, Tambur P. Green synthesis of TiO2 nanoparticles using Aloe vera extract. Int J Adv Res Phys Sci. 2015; 2(1A): 28-34. https://doi.org/10.1080/17518253.2018.1538430

Amanulla AM, Sundaram R. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today: Proc. 2019; 8: 323-331. https://doi.org/10.1016/j.matpr.2019.02.118

Downloads

Issue

Section

article

How to Cite

1.
Synthesis and photocatalytic applications of TiO2-CQDs nanocomposites prepared by biological methods. Baghdad Sci.J [Internet]. [cited 2025 Jan. 22];22(3). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9549