Polyphenol Profile, Antioxidant Potential, Vitamin C and Mineral Contents of Crude Parsley Leaves Extract (Petroselinum crispum) and Its Isolated Apigenin: A Comparative Study
DOI:
https://doi.org/10.21123/bsj.2024.9622Keywords:
Antioxidants, Apigenin, Chromatography, Parsley, Vitamin C.Abstract
Petroselium crispum or parsley is a typical culinary vegetable that is used as a flavouring and aromatic food additive. The aim of this research was to purify a major flavonoid present in parsley leaves, apigenin and evaluate the polyphenol, mineral and vitamin C contents in parsley leaves extract (PLE); in addition, the study compared antioxidant activities of ethanolic PLE with purified apigenin (AP), applying different non-enzymatic strategies using ascorbic acid (AA) as a reference. A complete screening for bioactive compounds in the ethanolic PLE was performed by HPLC analysis. The research outcomes indicated that purification of apigenin was successfully achieved by column chromatography with a high yield and purity; a single peak in the HPLC chromatogram confirmed this. The analysis revealed that contents of total phenolic and flavonoid in the ethanolic PLE were 75.91± 3.33 mg. g-1 TA Eq and 15.61 ± 0.18 mg. g-1 respectively; vitamin C is found to be 4.01 mg. g-1. Our results indicated that among the trace minerals in parsley leaves, calcium and sodium documented the highest values; 14.13 mg. g-1 and 8.51 mg. g-1, while copper and manganese had the lowest values; 0.02 mg. g-1 and 0.012 mg. g-1 respectively. Finally, our findings demonstrated that purified AP had superior potential than ethanolic PLE for reducing power, total antioxidant, nitric oxide and superoxide scavenging activities. In contrast, the ethanolic PLE exhibited greater antioxidant activity than AP towards suppressing the DPPH and hydroxyl radicals.
Received 23/09/2023
Revised 15/03/2024
Accepted 17/03/2024
Published Online First 20/12/2024
References
Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F. Worldwide Research Trends on Medicinal Plants. Int J Environ Res Public Health. 2020; 17(10): 3376. https://doi.org/10.3390/ijerph17103376
Prasathkumar M, Anisha S, Dhrisya C, Becky R, Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants– A review. Phytomed Plus. 2021; 1(2): 100029. https://doi.org/10.1016/j.phyplu.2021.100029
Nazir N, Rahman A, Uddin F, Khan Khalil AA, Zahoor M, Nisar M, et al. Quantitative Ethnomedicinal Status and Phytochemical Analysis of Berberis lyceum Royle. J Agron. 2021; 11(1): 130. https://doi.org/10.3390/agronomy11010130
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021; 20(3): 200-216. https://doi.org/10.1038/s41573-020-00114-z
Okaiyeto K, Oguntibeju OO. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. Int J Environ Res Public Health. 2021; 18(11): 5988. https://doi.org/10.3390/ijerph18115988
Karipçin MZ. Hydrogels improved parsley ( Petroselinium crispum ( Mill) Nyman ) growth and development under water de fi cit stress. Peer J. 2023; 11: e15105. https://doi.org/10.7717/peerj.15105
Kustiawan PM, Siregar KAAK, Saleh LO, Batistuta MA, Setiawan IM. A review of botanical characteristics, chemical composition, pharmacological activity and use of scorodocarpus borneensis. Biointerface Res Appl Chem. 2022; 12(6): 8324-8334. https://doi.org/10.33263/BRIAC126.83248334
Fernandes Â, Polyzos N, Petropoulos SA, Pinela J, Ardohain E, Moreira G, et al. Phytochemical composition and nutritional value of pot-grown turnip-rooted and plain and curly-leafed parsley cultivars. J Agron. 2020; 10(9): 1416-page.https://doi.org/10.3390/agronomy10091416
Bommakanti V, Puthenparambil Ajikumar A, Sivi CM, Prakash G, Mundanat AS, Ahmed F, et al. An Overview of Herbal Nutraceuticals, Their Extraction, Formulation, Therapeutic Effects and Potential Toxicity. Separations. 2023; 10(3): 177.https://doi.org/10.3390/separations10030177
Pajević S, Mimica-Dukić N, Nemeš I, Župunski M, Simin N, Watson M, et al. Arsenic content and phenolic compounds in parsley (Petroselinum Crispum (Mill) Fuss) and celery (Apium Graveolens L.) cultivated in vojvodina region, Serbia. Food Res. 2021; 48(2): 213-225. https://doi.org/10.5937/ffr48-34625
El-Sayed MM, Metwally NH, Ibrahim IA, Abdel-Hady H, Abdel-Wahab BSA. Antioxidant Activity, Total Phenolic and Flavonoid Contents of Petroselinum crispum Mill. J Appl Life Sci Int. 2018; 19(2): 1-7.https://doi.org/10.9734/JALSI/2018/45113
Aishwaya J. Nutraceuticals Potential of Petroselinum Crispum: A Review. J Complement Med Altern Healthc. 2018; 7(2): 1-6. https://doi.org/10.19080/jcmah.2018.07.555707
Papuc C, Predescu C, Nicorescu Va, Stefan G, Nicorescu I. Antioxidant properties of a parsley (Petroselinum crispum) juice rich in polyphenols and nitrites. Curr Res Nutr Food Sci J. 2016; 4: 114-118.
Al-Khayri JM, Sahana GR, Nagella P, Joseph B V, Alessa FM, Al-Mssallem MQ. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules. 2022; 27(9): 2901. https://doi.org/10.3390/molecules27092901
Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, et al. The Therapeutic Potential of Apigenin. Int J Mol Sci. 2019; 20(6): 1305. https://doi.org/10.3390/ijms20061305
Majma Sanaye P, Mojaveri MR, Ahmadian R, Sabet Jahromi M, Bahramsoltani R. Apigenin and its dermatological applications: A comprehensive review. Phytochem. 2022; 203: 113390.
Yoon JH, Kim MY, Cho JY. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int J Mol Sci. 2023; 24(2): 1498. https://doi.org/10.3390/ijms24021498
Radovanović B, Mladenović J, Radovanović A, Pavlović R, Nikolić V. Phenolic composition, antioxidant, antimicrobial and cytotoxic activites of Allium porrum L.(Serbia) extracts. J Food Nutr Res. 2015; 3(9): 564-569.
Turatbekova A, Mirzarakhmetova D, Jumaniyozov J, Khudayberganov E, Toshpulatov N, Rakhmatov A, et al. A brief overview on the methods for extraction and identification of flavonoids. 4th International Conference on Energetics, Civil and Agriculture Engineering. 2023; 434: 1 -8. https://doi.org/10.1051/e3sconf/202343403037
Tavakoli S, Khalighi SF, Khosravi DN,Yaghoob M, Hajiaghaee R, Gholami A, et al. Isolation and purification of apigenin, quercetin and apigenin 7-O-glycoside from Apium graveolens L., Petroselinum crispum (Mill.) Fuss, Allium cepa L., respectively . J Med Plants. 2022; 21(83): 72-86. https://doi.org/10.52547/jmp.21.83.72
Nayaka HB, Londonkar RL, Umesh MK, Tukappa A. Antibacterial Attributes of Apigenin Isolated from Portulaca oleracea L. Int J Bacteriol. 2014; 2014: 1-8. https://doi.org/10.1155/2014/175851
Chuljerm H, Paradee N, Katekaew D, Nantachai P, Settakorn K, Srichairatanakool S, et al. Iron Chelation Property, Antioxidant Activity, and Hepatoprotective Effect of 6-Gingerol-Rich Ginger (Zingiber officinale) Extract in Iron-Loaded Huh7 Cells. Plants. 2023; 12(16): 2936. https://doi.org/10.3390/plants12162936
Lin JY, Tang CY. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007; 101(1): 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
Atanassova M, Georgieva S, Ivancheva K. Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. J Univ Chem Technol Metall. 2011; 46(1): 81-88.
Gouveia S, Castilho PC. Antioxidant potential of Artemisia argentea L’Hér alcoholic extract and its relation with the phenolic composition. Food Res Int. 2011; 44(6): 1620-1631.https://doi.org/10.1016/j.foodres.2011.04.040
Ceccanti C, Brizzi A, Landi M, Incrocci L, Pardossi A, Guidi L. Evaluation of Major Minerals and Trace Elements in Wild and Domesticated Edible Herbs Traditionally Used in the Mediterranean Area. Biol Trace Elem Res. 2021; 199(9): 3553-3561. https://doi.org/10.1007/s12011-020-02467-3
Riaz M, Nawaz M, Qadir R, Hussain S, Roheen T, Afzal M, et al. Characterization and antioxidant potential of white mustard (Brassica hirta) leaf extract and stabilization of sunflower oil. Open Chem. 2023; 21(1): 20230175.https://doi.org/10.1515/chem-2023-0175
El Khomsi M, Kara M, Hmamou A, Assouguem A, Al kamaly O, Saleh A, et al. In Vitro Studies on the Antimicrobial and Antioxidant Activities of Total Polyphenol Content of Cynara humilis from Moulay Yacoub Area (Morocco). Plants. 2022; 11(9): 1-12. https://doi.org/10.3390/plants11091200
Ezeanyika LUS, Anosike CA, Oji CN, Chibuogwu CC. Phytochemistry, micronutrient composition, and antioxidant potentials of Citrus maxima (Shaddock) fruit juice. J Pharmacogn Phytochem. 2022; 11(5): 20-23.https://doi.org/10.22271/phyto.2022.v11.i5a.14498
Saravanakumar A, Periyasamy P, Jang HT. In vitro assessment of three different artemisia species for their antioxidant and anti-fibrotic activity. Biocatal Agric Biotechnol. 2019; 18: 101040. https://doi.org/10.1016/j.bcab.2019.101040
Amudha M, Rani S. Evaluation of in vitro antioxidant potential of Cordia retusa. Indian J Pharm Sci. 2016; 78(1): 80-86. https://doi.org/10.4103/0250-474x.180253
Oboh G, Puntel RL, Rocha JBT. Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain – in vitro. Food Chem. 2007; 102(1): 178-185. https://doi.org/10.1016/j.foodchem.2006.05.048
Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971; 44(1): 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995; 28(1): 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Mensor LL, Menezes FS, Leitão GG, Reis AS, SantosTC, Coube CS, et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res. 2001; 15(2): 127-130. https://doi.org/10.1002/ptr.687
Ma Y, Meng A, Liu P, Chen Y, Yuan A, Dai Y, et al. Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules. 2022; 27(2): 362. https://doi.org/10.3390/molecules27020362
Dini I, Laneri S. Nutricosmetics: A brief overview. Phytother Res. 2019; 33(12): 3054-3063. https://doi.org/10.1002/ptr.6494
Ibrahiem AA, Mosa AA, Mohammed LY. Estimation of oxidant , antioxidant and metabolic biomarkers in sera of diabetic rats administrated with parsley leaves extract and its isolated apigenin. Clin Nutr Open Sci. 2024; 54: 113-126. https://doi.org/10.1016/j.nutos.2024.02.003
Kowalska T. Thin Layer Chromotography (TLC) in the screening of Botanicals – Its Versatile Potential and Selected Applications. Molecules. 2022; 27(19): 6607. https://doi.org/10.3390/molecules27196607
Derouich M, Bouhlali EDT, Hmidani A, Bammou M, Bourkhis B, Sellam K, et al. Assessment of total polyphenols, flavonoids and anti-inflammatory potential of three Apiaceae species grown in the Southeast of Morocco. Sci Afr J. 2020; 9: 0-15. https://doi.org/10.1016/j.sciaf.2020.e00507
Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front Pharmacol. 2022; 13: 283. https://doi.org/10.3389/fphar.2022.806470
El-Houseiny W, Algharib S, Mohamed E, Metwally M, Mahmoud Y, Alghamdi Y. Dietary parsley seed mitigates methomyl-induced impaired growth performance, hemato-immune suppression, oxidative stress, hepato-renal damage, and pseudomonas aeruginosa susceptibility in Oreochromis niloticus. Antioxidants. 2022; 11(6): 1-21. https://doi.org/10.3390/antiox11061185
Yi X, Dong M, Guo N, Tian J, Lei P, Wang S, et al. Flavonoids improve type 2 diabetes mellitus and its complications: a review. Front Nutr. 2023; 10: 1192131. https://doi.org/10.3389%2Ffnut.2023.1192131
Sitarek-Andrzejczyk M, Przybył J, Gajewski M. The effect of post-harvest treatment and storage conditions on vitamin C content in two leafy parsley cultivars. Proceedings of the 8th International Scientific Conference Rural Development. 2017; 108-113. https://doi.org/10.15544/RD.2017.018
Amirpasha V, Kulieva T, Hernández E, Jukka M, Suomela P. Non -destructive assessment of vitamin C in foods : a review of the main findings and limitations of vibrational spectroscopic techniques. Eur Food Res Technol. 2022; 248(8): 2185-2195. https://doi.org/10.1007/s00217-022-04023-w
Dobričević N, Šic Žlabur J, Voća S, Pliestić S, Galić A, Delić A, et al. Bioactive compounds content and nutritional potential of different parsley parts (Petroselinum crispum Mill). J Cent Eur Agric. 2019; 20(3): 900-910. https://doi.org/10.5513/JCEA01/20.3.2417
Mazurek A, Włodarczyk-Stasiak M. A New Method for the Determination of Total Content of Vitamin C, Ascorbic and Dehydroascorbic Acid, in Food Products with the Voltammetric Technique with the Use of Tris (2-carboxyethyl) phosphine as a Reducing Reagent. Molecules. 2023; 28(2): 812. https://doi.org/10.3390/molecules28020812
Didier AJ, Stiene J, Fang L, Watkins D, Dworkin LD, Creeden JF. Antioxidant and Anti-Tumor Effects of Dietary Vitamins A, C, and E. Antioxidants. 2023; 12(3): 632. https://doi.org/10.3390/antiox12030632
Cerullo G, Negro M, Parimbelli M, Pecoraro M, Perna S, Liguori G, et al. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front Immunol. 2020; 11(10): 1-16. https://doi.org/10.3389/fimmu.2020.574029
Ustianowski Ł, Ustianowska K, Gurazda K, Rusiński M, Ostrowski P, Pawlik A. The Role of Vitamin C and Vitamin D in the Pathogenesis and Therapy of Periodontitis-Narrative Review. Int J Mol Sci. 2023; 24(7): 6774. https://doi.org/10.3390/ijms24076774
Sadee BA, Ali RJ. Determination of essential and trace elements in various vegetables using ICP-MS. Baghdad Sci J. 2023; 20(3): 715-725. https://doi.org/10.21123/bsj.2022.7253
Najmi A, Albratty M, Al-Rajab AJ, Alhazmi H, Javed S, Ahsan W, et al. Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards. Int J Environ Res Public Health. 2023; 20(4): 2984. https://doi.org/10.3390/ijerph20042984
Weyh C, Krüger K, Peeling P, Castell L. The role of minerals in the optimal functioning of the immune system. Nutrients. 2022; 14(3): 644. https://doi.org/10.3390/nu14030644
Jomova K, Makova M, Alomar SY, Alwasel S, Nepovimova E , Kuca K , et al. Essential metals in health and disease. Chem Biol Interact. 2022; 367: 110173.https://doi.org/10.1016/j.cbi.2022.110173
Bernal A, Zafra MA, Simón MJ, Mahía J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients. 2023; 15(2): 395. https://doi.org/10.3390/nu15020395
Ishfaq M, Wang Y, Yan M, Wang Z, Wu L, Li C, et al. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China. Front Plant Sci. 2022; 13: 802274. https://doi.org/10.3389/fpls.2022.802274
Tardy AL, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients. 2020; 12(1): 228. https://doi.org/10.3390%2Fnu12010228
Chase C, Lunney JK. Immune System. 10 th edition. Hoboken, New Jersey: John Wiley and sons, Inc. 2019. Ch 16, Diseases of Swine. p. 264- 290. https://doi.org/10.1002/9781119350927
Zheng YZ, Deng G, Zhang YC. Multiple free radical scavenging reactions of flavonoids. Dye Pigment. 2022; 198: 109877. https://doi.org/10.1016/j.dyepig.2021.109877
Mara de Menezes Epifanio NM, Cavalcanti LRI, Dos Santos KF, Soares Coutinho Duarte P, Kachlicki P, Ożarowski M et al. Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum) aqueous extract. Food Funct. 2020; 11(6): 5346-5356. https://doi.org/10.1039/d0fo00484g
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem. 2022; 46(4): e13950. https://doi.org/10.1111/jfbc.13950
Dzoyem JP, Donfack ARN, Tane P, McGaw LJ, Eloff JN. Inhibition of Nitric Oxide Production in LPS-Stimulated RAW 264.7 Macrophages and 15-LOX Activity by Anthraquinones from Pentas schimperi. Planta Med. 2016; 82(14): 1246-1251. https://doi.org/10.1055/s-0042-104417
Fitton R, Sweetman J, Heseltine-Carp W, van der Feltz-Cornelis C. Anti-inflammatory medications for the treatment of mental disorders: A scoping review. Brain Behav Immun Health. 2022; 26: 100518. https://doi.org/10.1016/j.bbih.2022.100518
Gandhimathi C. Nutritional Evaluation, in vitro Free Radical Scavenging and in vivo Anti-inflammatory Effects of Gisekia pharnaceoides and Identification of Kaempferol as a Nutraceutical Agent. Br Biotechnol J. 2011; 1(3): 113-135. https://doi.org/10.9734/bbj/2011/597
Shantabi L, Jagetia GC, Ali MA, Singh TT, Devi SV. Antioxidant potential of Croton caudatus leaf extract in vitro. Tranl Med Biotech. 2014; 2(1): 1-15.
Lalrinzuali K, Vabeiryureilai M, Jagetia GC, Lalawmpuii PC. Free radical scavenging and antioxidant potential of different extracts of Oroxylum indicum in vitro. Adv Biomed Pharm. 2015; 2(3): 120-130. https://doi.org/10.19046/abp.v02i03.02
Sanna D, Fadda A. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR). Molecules. 2022; 27(14): 4560. https://doi.org/10.3390/molecules27144560
Gulcin I, Alwasel SH. Metal Ions , Metal Chelators and Metal Chelating Assay as. Processes. 2022; 10(132): 1-16. https://doi.org/10.3390/pr10010132
Al-Muwaly KY, Al-Flayeh KA, Ali A, Younus K. Antioxidant and free radical scavenging effects of Iraqi sumac (Rhus coriaria L). Baghdad Sci J. 2013; 10(3): 921-933. https://doi.org/10.21123/bsj.2013.10.3.921-933
Kuźma P, Drużyńska B, Obiedziński M. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum). Acta Sci Pol Technol Aliment. 2014; 13(2): 145-154. https://doi.org/10.17306/J.AFS.2014.2.4
Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandström B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999; 81(6): 447-455. https://doi.org/10.1017/s000711459900080x
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Superoxide anion chemistry—Its role at the core of the innate immunity. Int J Mol Sci. 2023; 24(3): 1841-page. https://doi.org/10.3390%2Fijms24031841
Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C, et al. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot. 2021; 137: 257-264. https://doi.org/10.1016/j.sajb.2020.10.022
Gnintoungbe GS, Medehouenou TCM, Adounkpe F, Akpovi C, Loko F. Phytochemical Screening, Antioxidant Activity and Safety of Petroselinum crispum (Mill.) AW Hill Apiaceae Leaves Grown in Benin. Open J Appl Sci. 2023; 13(1): 36-50. https://doi.org/10.4236/ojapps.2023.131004
Downloads
Issue
Section
License
Copyright (c) 2024 Aveen A. Ibrahiem, Azzam A. Mosa , Lina Y. Mohammed
This work is licensed under a Creative Commons Attribution 4.0 International License.