Study of the Toxicity and Cell Viability of Zirconium Oxide Nanoparticles Prepared from an Extract of the Vitex Agnus Castus plant

Authors

DOI:

https://doi.org/10.21123/bsj.2024.9881

Keywords:

Antibacterial, Biosynthesis approach, Cell line A549, Nanoparticles, Zirconium oxide.

Abstract

In the current study, ZrO2 nanoparticles were synthesized using a plant extract derived from Vitex agnus castus, and an alkaline medium such as sodium hydroxide. A biosynthetic approach was utilized to prepare zirconium oxide nanoparticles for this research project. This method stands out from others due to its cost-effectiveness, simplicity, and lack of potential risks.The prepared samples were characterized using transmission electron microscopy TEM, scanning electron microscopy SEM, Fourier transform infrared spectroscopy FT-IR, ultraviolet-visible spectroscopy UV-VIS, X-ray diffraction, and energy-dispersive X-ray spectroscopy EDX. The size of the crystal was determined using X-ray diffraction in conjunction with the Debye-Scherer equation, resulting in a value of 26.37 nm. Scanning electron microscopy and transmission electron microscopy were employed to ascertain the particle size of ZrO2 nanoparticles.In this study, these nanoparticles exhibited varying levels of activity against two types of gram-positive bacteria(Staphylococcus aurous and Streptococcus pneumonia), two types of gram-negative bacteria (Proteus mirabilis and Escharia coli), and one type of fungus, Candida. Interestingly, synthesized zirconium oxide nanoparticles' anticancer potential has been uncovered with MTT assays at varied concentrations for cell line A549 lung cancer. The percentage of inhibition revealed an increase with increasing concentration. Calculating the inhibition of half of the cells IC50, which was equal to (58.4 mg/ml), suggests that zirconium oxide nanoparticles have the potential for utilization in cancer treatment.

References

Farooqi ZUR, kQadeer A, Hussain MM, Zeeshan N, Ilic P. Characterization and physicochemical properties of nanomaterials. In Nanomaterials: Synthesis, Characterization, Hazards and Safety; A volume in Micro and Nano Technologies, Elsevier. 2021; 97-121. https://doi.org/10.1016/C2020-0-00287-2.

Varghese RJ, Parani S, Thomas S, Oluwafemi OS, Wu J. Introduction to nanomaterials: synthesis and applications. In Nanomaterials for Solar Cell Applications; Elsevier. 2019; 75-95. https://doi.org/10.1016/C2016-0-03432-0

Barik TK, Maity GC, Gupta P, Mohan L, Santra TS. Nanomaterials: An Introduction. Nanomaterials and Their Biomedical Applications. 2021; 1-27. https://doi.org/10.1007/978-981-33-6252-9_1

Singh B K, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Metals. 2020; 39: 751-766.https://doi.org/10.1007/s12598-019-01205-6.

Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, et al. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J Clust Sci. 2021; 32: 351-361. https://doi.org/10.1007/s10876-020-01794-8

Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, et, al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq. 2021; 118008. https://doi.org/10.1016/j.molliq.2021.118008

Al-Bahadili Z R, AL-Hamdani AAS, Rashid FA, Al-Zubaidi LA, Ibrahim SM. An Evaluation of the Activity of Prepared Zinc Nanoparticles with Extracted Alfalfa Plant in the Treatment of Heavy Metals. Baghdad Sci J. 2022; 19(6): 1399-1399. https://dx.doi.org/10.21123/bsj.2022.

Singh R, Singh S. Nanomanipulation of consumer goods: effects on human health and environment. In Nanotechnology in Modern Animal Biotechnology; Springer. 2019; 221-254.https://doi.org/10.1007/978-981-13-6004-6_7

Khan I, Saeed Kh Khan I. Nanoparticles: Properties, applications and toxicities, Arab J Chem. 2019; 12(7): 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011

Didegah F, Thelwall M. Determinants of research citation impact in nanoscience and nanotechnology. J Assoc Inf Sci Technol. 2013; 64(5): 1055-1064.‏ https://doi.org/10.1002/asi.22806

Alsahib SA. Characterization and biological activity of some new derivatives derived from sulfamethoxazole compound. Baghdad Sci J. 2020; 17(2): 471-480.http://dx.doi.org/10.21123/bsj.2020.17.2.0471.

Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules.. 2020; 25(1):112.https://doi.org/ 10.3390/ molecules 25010112.

Rajagopal G, Nivetha A, Ilango S, Muthudevi GP, Prabha I, Arthimanju R. Phytofabrication of selenium nanoparticles using Azollapinnata: Evaluation of catalytic properties in oxidation, antioxidant and antimicrobial activities. J Environ Chem Eng. 2021 Aug 1; 9(4): 105483. https://doi.org/10.1016/j.jece.2021.105483

Venkat KS, Rajeshkumar S. Plant-Based Synthesis of Nanoparticles and Their Impact. In Nanomaterials in Plants, Ch 2, Algae and Microorganisms. 2018; 1: 33-57. https://doi.org/10.1016/B978-0-12-811487-2.00002-5.

Lashin I, Hasanin M, Hassan SAM, Hashem AH. Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Convers Biorefin. 2023; 13: 10133–10146.https://doi.org/10.1007/s13399-021-01873-4

Siddiqi KS, Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett. 2016; 11: 1-13. ;https://doi.org/10.1186/s11671-016-1695-z.

Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO. Green Synthesis of Metallic Nanoparticles Using Some Selected Medicinal Plants from Southern Africa and Their Biological Applications. Plants 2021, 10: 1929. https://doi.org/10.3390/plants10091929.

da Silva AF, Fagundes AP, Macuvele DL, de Carvalho EF, Durazzo M, Padoin N, et al. Green synthesis of zirconia nanoparticles based on Eucleanatalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties. Colloids Surf A Physicochem Eng Asp. 2019 Dec 20; 583: 123915.https://doi.org/10.1016/j.colsurfa.2019.123915

Abdul Karem L K , Radhi I M, Mohammed S S . Biological activity of complexes of some amino acid: Review. Indian J Forensic Med Toxicol. 2020; 14(4): 2254-2261. https://doi.org/10.37506/ijfmt.v14i4.11888.

Alagarsamy A, Chandrasekaran S, Manikandan A. Green synthesis and characterization studies of biogenic zirconium oxide (ZrO2) nanoparticles for adsorptive removal of methylene blue dye. J Mol Struct. 2022; 1247. 131275.‏ https://doi.org/10.1016/j.molstruc.2021.131275.

Kumaresan M, Anand KV, Govindaraju K, Tamilselvan S, Kumar VG. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb Pathog. 2018; 124: 311-5. https://doi.org/10.1016/j.poly.2009.06.032.

Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N. Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano-and micro-ZrO2 and-TiO2 particles. Ecotoxicol Environ Saf. 2013; 93: 191-7. https://doi.org/10.1016/j.poly.2009.06.032

Ghani S, Rafiee B, Bahrami S, Mokhtari A, Aghamiri S, Yarian F. Green synthesis of silver nanoparticles using the plant extracts of vitex agnus castus L: An ecofriendly approach to overcome antibiotic resistance. Int J Prev Med. 2022 Oct; 13: 133. http://10.4103/ijpvm.ijpvm_140_22.

Salavati-Niasari M, Dadkhah M, Davar F. Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron. 2009 Sep 23; 28(14): 3005-9. https://doi.org/10.1016/j.poly.2009.06.032

Mahdi S H, Abdul Karem, LK. Synthesis, characterization, anticancer and antimicrobial studies of metal nanoparticles derived from Schiff base complexes. Inorg. Chem. Commun. 2024; 156(112524). https://doi.org/10.1016/j.inoche.2024.112524

Al-Zaqri N, Muthuvel A, Jothibas M, Alsalme A, Alharthi FA, Mohana V. Biosynthesis of zirconium oxide nanoparticles using Wrightiatinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities. Inorg Chem Commun. 2021; 127: 108507. https://doi.org/10.1016/j.inoche.2021.108507

Salem SS, Fouda Amr. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021; 199 (1): 344-370.‏ https://doi.org/10.1007/s12011-020-02138-3

Sigwadi R, Mokhotjwa SD , Touhami M, Patrick N. Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. Nano Res. 2017; 50: 18-31.https://doi.org/10.4028/www.scientific.net/JNanoR.50.18

Abeed BS, Al-Shmgani HS, Khalil KA, Mohammed HA. Evaluation of the potential protective role of galangin associated with gold nanoparticles in the histological and functional structure of kidneys of adult male albino mice Mus musculus administration with carbon tetrachloride. Ibn al-Haitham J Pure Appl Sci. 2023; 36(3): 72-84.‏ http://doi.org/10.30526/36.3.3250

Habis C, Zaraket J, Aillerie M. Transparent Conductive Oxides. Part II. Specific Focus on ITO, ZnO-AZO, SnO2-FTO Families for Photovoltaics Applications. Defect Diffus Forum.2022; 417(4): 257-272. https://doi.org/10.4028/p-6fqmfi .

Zhu W, Wu Y, Zhang Y. Synthesis and characterisation of superhydrophobic CNC/ZnO nanocomposites by using stearic acid. Micro Nano Lett.2019; 14(13): 1317-1321. https://doi.org/10.1049/mnl.2019.0335 .

Mohan B, Shaalan N. Synthesis, Spectroscopic, and Biological Activity Study for New Complexes of Some Metal Ions with Schiff Bases Derived From 2-Hydroxy Naphthaldehyde with 2-amine benzhydrazide. Ibn al-Haitham J Pure Appl Sci. 2023; 36(1): 208-224. http:/doi.org/10.30526/36.1.2978

Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: a comprehensive review. Oxid Med Cell Longev. 2021; 2021(2): 1-14. https://doi.org/10.1155/2021/2497354.

Khalaf RL, Ahmed EM, Mathkor TH, AL-Zubaidi HY. Synthesis of Silver Nanoparticles Using L. Rosa Flowers Extracts: Thermodynamic and Kinetic Studies on the Inhibitoty Effects of Nanoparticles on Creatine Kinase Activity. Iraqi J Sci. 2021; 62(8): 2486-500. https://doi.org/10.24996/ijs.2021.62.8.1

Mohammed DB, Abbas AH, Ali AMA, Abed EH. Biodegradation of Anthracene Compound by Two Species of Filamentous Fungi. Baghdad Sci J. 2018; 5(1): 43-47. http://dx.doi.org/10.21123/bsj.2018.15.1.0043 .

Baqer SR, Alsammarraie AMA, Alias M, Al-Halbosiy MM, Sadiq AS. In Vitro Cytotoxicity Study of Pt Nanoparticles Decorated TiO2 Nanotube Array. Baghdad Sci J. 2020; 17(4): 1169-1169. https://doi.org/10.21123/bsj.2020.17.4.1169.

Wasly HS, El-Sadek MA, Henini M. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Appl Phys. 2018; 124:1-12. https://doi.org/10.1007/s00339-017-1482-4

Tharp, W F, Karem, L K A. Ewies F. Ewies. Green Synthesis, Characterization, Antimicrobial and Anticancer Studies of Zirconium Oxide Nanoparticles Using Thyme plant Extract. Mor. J. Chem. 2024; 12(2): 643–656 10.48317/IMIST.PRSM/morjchem-v12i2.45880.

Omanović-Mikličanin E, Badnjević A, Kazlagić A, Hajlovac M. Nanocomposites: A brief review. Health Technol. 2020; 10(1): 51-9. https://doi.org/10.1007/s12553-019-00380-x

Mahmoud WH, Deghadi RG, Mohamed GG. Metal complexes of ferrocenyl-substituted Schiff base: Preparation, characterization, molecular structure, molecular docking studies, and biological investigation. J Organomet Chem. 2020; 917: 121113.‏ https://doi.org/10.1016/j.jorganchem.2020.121113

Zari AT, Zari TA, Hakeem KR. Anticancer Properties of Eugenol: A Review. Molecules. 2021; 26(23):7407. https://doi.org/10.3390/molecules26237407

Mohammed SS, Karem LKA, Salman SA, Al-Darwesh MY. Spectroscopic, Thermodynamic and Kinetic Studies of Ligand Complexes Derived from 2-Aminothiophenol. Biochem Cell Arch. 2020; 20(2): 6329-6334.‏

Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020; 17(3): 787- 794. http://dx.doi.org/10.21123/bsj.2020.17.3.0787.

Downloads

Issue

Section

article

How to Cite

1.
Study of the Toxicity and Cell Viability of Zirconium Oxide Nanoparticles Prepared from an Extract of the Vitex Agnus Castus plant. Baghdad Sci.J [Internet]. [cited 2025 Jan. 22];22(3). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9881