دراسة التنوع الوراثي لعدد من أصناف الرز العراقي المستزرع في وسط وجنوب العراق باستخدام تقنية تسلسل الجيل القادم

المؤلفون

  • رفل علي سلوم معهد الهندسة الوراثية والتقنيات الاحيائية للدراسات العليا، جامعة بغداد، بغداد، العراق https://orcid.org/0009-0002-0414-4856
  • علي محمد منير معهد الهندسة الوراثية والتقنيات الاحيائية للدراسات العليا، جامعة بغداد، بغداد، العراق

DOI:

https://doi.org/10.21123/bsj.2024.10073

الكلمات المفتاحية:

جينوم البلاستيدة الخضراء، العلاقات التطورية، أوريزا AA جينوم، تحليل شجرة التطور الوراثي، الأرز (أوريزا ساتيفا).

الملخص

نظرًا لأهمية محصول الأرز في العراق ، أجريت هذه الدراسة لتحديد أصول الأصناف الرئيسية وفهم العلاقات التطورية بين أصناف الأرز العراقية وغيرها من انواع الأرز الآسيوية التي يمكن أن تكون ذات اهمية كبيرة في تحسين هذا المحصول. تم الحصول على خمسة أنواع من قسم البحوث الزراعية في العراق, ومن بين هذه الاصناف ( العنبر 33 ، دجلة ، غدير ، البركة ، والأرز الأسود) وقد تم تسلسل الحمض النووي الجيني باكملة باستخدام منصات تسلسل الجيل التالي القائمة على  تقنية DNA nanoball (DNB),تم الحصول على تسلسل 26 نوعاً من قاعدة بيانات موارد جينوم  NCBI .اظهر التحليل التطوري بنائاً على البلاستيدة الخضراء الانواع قسمت الى مجاميع وفقاً الى موقعهم الجغرافي  تم تقسيم الأصناف العراقية إلى مجموعتين المجموعة الاولى تحتوي Amber33 و Japonica NC_001320 بينما تحتوي مجموعة ثانية على Dijla و Ghadir و Baraka و Black Rice و Indica NC_008155.

المراجع

Fouad AS, AlSobeai SM. In silico characterization of a cyclin dependent kinase-A (CDKA) and its coding gene in some Oryza species. Baghdad Sci J. 2020; 17(3): 760-771. http://dx.doi.org/10.21123/bsj.2020.17.3.0760

Fouad A S, Hafez R M. Molecular modeling and in silico characterization of a pathogenesis-related protein-10 (PR10) and its coding genes in some Oryza species. Baghdad Sci J. 2019; 16(4 (Suppl.)): 0993-1002. http://dx.doi.org/10.21123/bsj.2019.16.4(Suppl.).0993

Abakah AJS, Al-Mohammad MHS. Response of Yield Components of Some Black Rice Cultivars to Spraying with The Amino Acid Phenylalanin. IOP Conf Ser Earth Environ Sci. 2021. 910(1): 12020. http://doi.org/10.1088/1755-1315/910/1/012020

Civáň P, Craig H, Cox CJ, Brown TA. Three geographically separate domestications of Asian rice. Nat plants. 2015; 1(11): 1–5. http://dx.doi.org/10.1038/nplants.2015.164

Mohamed SJ, Salman OH. An economic Analysis of the Impact of the I Raqi Dinar Exchange Rate On the imported quantities of rice during the period 1990-2020. Iraqi J Agric Sci. 2022; 54(2): 542–52. https://doi.org/10.36103/ijas.v54i2.1730

Armanto ME. Improving rice yield and income of farmers by managing the soil organic carbon in South Sumatra landscape, Indonesia. Iraqi J Agric Sci. 2019; 50(2): 653–61. https://doi.org/10.36103/ijas.v2i50.665

SINGH, Bhupinder Pal, et al. CpGDB: a comprehensive database of chloroplast genomes. Bioinformation, 2020, 16.2: 171 https://doi.org/10.6026/97320630016171

Bogdanova Vera S. Genetic and molecular genetic basis of nuclear-plastid incompatibilities. Plants. 2019; 9(1):23-40 https://doi.org/10.3390/plants9010023

Cubry P, Tranchant-Dubreuil C, Thuillet A-C, Monat C, Ndjiondjop M-N, Labadie K, et al. The rise and fall of African rice cultivation revealed by analysis of 246 new genomes. Curr Biol. 2018; 28(14): 2274–2282. https://doi.org/10.1016/j.cub.2018.05.066

Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinform. 2015; 13(5): 278–289. https://doi.org/10.1016/j.gpb.2015.08.002

Lateef AA, Garuba T, Abdulkareem KA, Olayinka BU, Olahan GS, Adeyemi SB, et al. Molecular Characterization of Potential Crop Pathogens Associated with Weeds as Endophytes in Uniilorin Plantations, Nigeria. Baghdad Sci J. 2022; 19(6): 1201-1211. https://dx.doi.org/10.21123/bsj.2022.5999

Moner AM, Furtado A, Henry RJ. Two divergent chloroplast genome sequence clades captured in the domesticated rice gene pool may have significance for rice production. BMC Plant Biol. 2020; 20(1): 1–9. https://doi.org/10.1186/s12870-020-02689-6

Cheng L, Nam J, Chu S H, Rungnapa P, Min, M H, Cao Y, et al.‏ Signatures of differential selection in chloroplast genome between japonica and indica. Rice. 2019; 12, 1-13. https://doi.org/10.1186/s12284-019-0322-x

Al-Barhawee NIK, Ahmed JMY. Using Sequencing Technique for Diagnostic Different Species of Genus Rhizobium Which Isolated from Legume Plants. Iraqi J Sci. 2022; 63(10): 4213–4224. https://dx.doi.org/10.24996/ijs.2022.63.10.8

Gao L Z, Liu Y L, Zhang D, Li W, Gao J, Liu Y, et al. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Common Biol. 2019; 2(1): 278-291. ‏ https://doi.org/10.1038/s42003-019-0531-2

Jasim BN, Al-Salihy AA, Moner AM. The Partial DNA Sequencing and Phylogenic Analysis of Tomato yellow leaf curl virus Isolated from Iraqi tomato. Iraqi J Biotechnol. 2020; 19(1): 40–55.

Al-Hadeithi ZS, Al-Kazaz AKA, Al-Obaidi BK. Genetic diversity and relationships among Iraqi barley cultivars using RAPD–PCR technique. Iraqi J Agric Sci. 2012; 43:117–124.

Gitzendanner M A, Soltis P S, Wong G K S, Ruhfel BR, Soltis DE. Plastid phylogenomic analysis of green plants: a billion years of evolutionary history. Am J Bot. 2018; 105(3): 291-301. https://doi.org/10.1002/ajb2.1048

Bushnell B, Rood J, Singer E. BBMerge – Accurate paired shotgun read merging via overlap. PLoS One. 2017; 12(10): 1–15. https://doi.org/10.1371/journal.pone.0185056

Saloom RA, Moner AM. Mapping to reference is an efficient approach to achieve sufficient consensus for phylogenomic studies “Oryza chloroplast genome as a case study.” Iraqi J Biotechnol. 2022; 21(2). 439-445

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4): 357–359. https://doi.org/10.1038/nmeth.1923

Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013 Apr; 30(4): 772–780. https://doi.org/10.1093/molbev/mst010

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinform. 2001 Aug; 17(8): 754–5. https://doi.org/10.1093/bioinformatics/17.8.754

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010; 59(3): 307–321. https://doi.org/10.1093/sysbio/syq010

Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019; 47(W1): W59–64. https://doi.org/10.1093/nar/gkz238

Fujino K, Hirayama Y, Obara M, Tomohito Ikegaya. Introgression of the chromosomal region with the Pi-cd locus from Oryza meridionalis into O. sativa L. during rice domestication. Theor. Appl. Genet. 2019;132(7):1981–90. https://doi.org/10.1007/s00122-019-03332-1

ZHOU, Jiawu, et al. Interspecific Hybridization Is an Important Driving Force for Origin and Diversification of Asian Cultivated Rice Oryza sativa L. Front. Plant Sci, 2022, 13: 932737. https://doi.org/10.3389/fpls.2022.932737

Hoban S, Bruford M, Jackson J, Lopes-Fernandes M, Heuertz M, Hohenlohe, et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv. 2020; 248: 108654.‏ https://doi.org/10.1016/j.biocon.2020.108654

Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, et al. Screening and Verification of Photosynthesis and Chloroplast-Related Genes in Mulberry by Comparative RNA-Seq and Virus-Induced Gene Silencing. Int J Mol Sci. 2022; 23(15): 8620-8638. https://doi.org/10.3390/ijms23158620

Li B, Zheng Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Sci Rep. 2018; 8(1): 1–11. https://doi.org/10.1038/s41598-018-27453-7

Badro H, Furtado A, Henry R. Relationships between Iraqi rice varieties at the nuclear and plastid genome levels. Plants. 2019; 8(11): 481-495.

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
دراسة التنوع الوراثي لعدد من أصناف الرز العراقي المستزرع في وسط وجنوب العراق باستخدام تقنية تسلسل الجيل القادم. Baghdad Sci.J [انترنت]. [وثق 19 أكتوبر، 2024];22(3). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10073