التداخل مع استشعار النصاب لجرثومة Klebsiella pneumoniae بواسطة بعض المستخلصات النباتية يمكن أن يؤثر على تكوين الأغشية الحيوية ومقاومة المضادات الحيوية
DOI:
https://doi.org/10.21123/bsj.2024.10165الكلمات المفتاحية:
مقاومة المضادات الحيوية، القرفة، القرنفل، الكلبسيلا الرئوية، مثبطات استشعار النصابالملخص
استشعار النصاب (Quorum Sensing, QS) هو نظام اتصال جزيئي منسق بشكل مثالي، فهو نعمة للكلبسيلا الرئوية، ولعنة على المضيف. يُعتقد أن هذا النظام يجعل هذه الجرثومة سببًا رئيسيًا لعدوى المستشفيات المقاومة للأدوية المتعددة (MDR) . هدفت هذه الدراسة إلى بحث القدرة المضادة للجراثيم والمضادة للأغشية الحيوية للمستخلصات النباتات الطبية من خلال التداخل مع QS للكبسيلا الرئوية. جرى تحديد تأثير تراكيز مختلفة من المستخلصات الكحولية للقرفة والقرنفل على هذه الجرثومة من خلال تحليل منحنى النمو، مقايسة البقاء (MTT)، تكوين الأغشية الحيوية النوعية والكمية، مقاومة المضادات الحيوية، إلى جانب دراسة التعبير الجيني للجينات المشفرة لبعض عوامل الضراوة باستخدام تفاعل خميرة البلمرة المتسلسل الكمي في الوقت الحقيقي .(qRT-PCR) لم يكن للتراكيز المنخفضة من المستخلصات النباتية أي تأثير، لا على نمو الجرثومة، ولا على حيويتها، مدعومة بمنحنيات النمو. فضلا عن ذلك، جرى تثبيط إنتاج الأغشية الحيوية عن طريق التراكيز النباتية المنخفضة، وكانت مستخلصات القرفة والقرنفل قادرة على جعل الجراثيم MDR أكثر حساسية للمضادات الحيوية. على المستوى الجزيئي، أظهرت الجراثيم المعالجة إما بالقرنفل أو القرفة أو كلاهما معا انخفاض التعبير الجيني لكل من الجين المسؤول عن تنظيم تكوين الأغشية الحيوية (bssS)، وجين مقاومة الكاربابينيم (bla)، وكذلك الجين المستهدف ل QS .(LuxS) كان للمستخلص الكحولي للقرنفل والقرفة تأثيرات قوية على تقليل الصفات المرضية التي ينظمها QS في الكلبسيلا الرئوية. وأخيرًا، توصي الدراسة بمزيد من الاستكشاف لمستخلصات القرنفل والقرفة بشكل منفصل أو مجتمعة لتطوير علاجات بديلة ضد الالتهابات الرئوية المقاومة للأدوية المتعددة.
Received 09/11/2023
Revised 16/02/2024
Accepted 18/02/2024
Published Online First 20/12/2024
المراجع
Ristori MV, Scarpa F, Sanna D, Casu M, Petrosillo N, Longo UG, et al. Multidrug-resistant Klebsiella pneumoniae strains in a hospital: phylogenetic analysis to investigate local epidemiology. Microorganisms. 2024; 12(12):2541. https://doi.org/10.3390/microorganisms12122541
Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001; 55: 165-199.https://doi.org/10.1146/annurev.micro.55.1.165
Thi MTT, Wibowo D, Rehm BH. Pseudomonas aeruginosa biofilms. Int J Mol Sci. 2020; 21(22): 8671. https://doi.org/10.3390/ijms21228671
Qader AR, Muhamad JA. Nosocomial infection in Sulaimani burn hospital, Iraq. Ann Burn Fire Disasters. 2010; 23(4): 177–181.
Ostria-Hernandez ML, la Rosa KCJ, Arzate-Barbosa P, Lara-Hernández A, Sakai F, Ibarra JA, et al. Nosocomial, multidrug-resistant Klebsiella pneumoniae strains isolated from Mexico city produce robust biofilms on abiotic surfaces but not on human lung cells. Microb Drug Resist. 2018; 24(4): 422–433. https://doi.org/10.1089/mdr.2017.0073
Rønning TG, Aas CG, Støen R, Bergh K, Afset JE, Holte MS, et al. Investigation of an outbreak caused by antibiotic-susceptible Klebsiella oxytoca in a neonatal intensive care unit in Norway. Acta Paediatr. 2019; 108(1):76–82. https://doi.org/10.1111/apa.14584
Mustafa MS, Abdullah RM. Role of oqxA and oqxB genes in the development of multidrug resistant phenotype among clinical Klebsiella pneumoniae isolates from various cases. Iraqi J Sci. 2020; 61(8): 1902–1912. https://doi.org/10.24996/ijs.2020.61.8.7
Aziz FM, Authman SH, Shahata HA. The study of antibacterial activity of some plant extracts against causes of pneumonia. Baghdad Sci J. 2011; 8(2): 248–254. https://doi.org/10.21123/bsj.2011.8.2.248-254
Messaoudi A, Mansour W, Jaidane N, Chaouch C, Boujaâfar N, Bouallègue O. Epidemiology of resistance and phenotypic characterization of carbapenem resistance mechanisms in Klebsiella pneumoniae isolates at Sahloul University Hospital-Sousse, Tunisia. Afr Health Sci. 2019; 19(2): 2008–2020. https://doi.org/10.4314/ahs.v19i2.24
ALzubaidi SJ, Alkhafaji MH. Molecular detection of bla TEM and bla CTX-M genes in clinical and food-borne Klebsiella pneumoniae isolates. J Med Chem Sci. 2023; 6(7): 1706–1713. https://doi.org/10.26655/JMCHEMSCI.2023.7.20
Lu F, Zhang L, Ji J, Xu Y, Wang B, Xia J. Epidemiological and antimicrobial resistant patterns, and molecular mechanisms of carbapenem-resistant Klebsiella pneumoniae infections in ICU patients. Infect Drug Resist J. 2023; 16: 2813–2827. https://doi.org/10.2147/idr.s410657
Esposito S, Soto-Martinez ME, Feleszko W, Jones MH, Shen K, Schaad UB. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence. Curr Opin Allergy Clin Immunol. 2018; 18(3): 198–209. https://doi.org/10.1097/ACI.0000000000000433
Balestrino D, Ghigo JM, Charbonnel N, Haagensen JAJ, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 2008; 10: 685–701. https://doi.org/10.1111/j.1462-2920.2007.01491.x
Rafeeq HF, Sharba Z. Study the effect of cinnamon and tea tree oils on biofilm formation of Klebsiella Pneumoniae. J Applied Sci Nanotechnology. 2022; 2(2): 16–26. https://doi.org/10.53293/jasn.2022.4246.1082
Hoque MM, Bari ML, Juneja VK, Kawamoto S. Antimicrobial activity of cloves and cinnamon extracts against food borne pathogens and spoilage bacteria and inactivation of Listeria monocytogenes in ground chicken meat with their essential oils. Food Res Int. 2008; 72:9–21.
Al-fekaiki DF, Niamah AK, Al-Sahlany STG. Extraction and identification of essential oil from Cinnamomum zeylanicum barks and study the antibacterial activity. J Microbiol Biotech Food Sci. 2017; 7(3): 312-3016.
Ginting EV, Retnaningrum E, Widiasih DA. Antibacterial activity of clove (Syzygium aromaticum) and cinnamon (Cinnamomum burmannii) essential oil against extended-spectrum β-lactamase-producing bacteria. Vet World. 2021; 14(8): 2206–2211. https://doi.org/10.14202/vetworld.2021.2206-2211
El-Baky RME, Hashem ZS. Eugenol linalool: Comparison of their antibacterial and antifungal activities. Afr J Microbiol Res. 2016; 10(44): 1860–1872. https://doi.org/10.5897/AJMR2016.8283
He TF, Wang LH, Niu D, Wen Q, Zeng XA. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch Microbiol. 2019; 201(4): 451–458. https://doi.org/10.1007/s00203-018-1572-5
Sadeq ZE, Lafta IJ. Tigecycline is the most effective against multi-drug resistant Klebsiella pneumoniae recovered from burn wound infections in two hospitals in Al-Kut city, Iraq. Iraqi J Sci. February 2024; 65 (2). https://doi.org/10.24996/ijs.2024.65.2.7
Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020; 12(1): 1–10. https://doi.org/10.4103/jpbs.jpbs_175_19
Anessiny G, Perez C. Screening of plants used a green line. Folk medicine for antimicrobial activity. J Ethnopharmacol. 1993; 39: 119–128. https://doi.org/10.1016/0378-8741(93)90027-3
Jorgensen JH. Antimicrobial susceptibility testing of bacteria that grow aerobically. Infect Dis Clin North Am. 1993; 7: 393–409. https://doi.org/10.1016/S0891-5520(20)30528-6
Oh YJ, Hong J. Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems. LWT Food Sci Technol. 2022; 153: 112565. https://doi.org/10.1016/j.lwt.2021.112565
Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989; 42: 872–874. https://doi.org/10.1136/jcp.42.8.872
Lee KWK, Periasamy S, Mukherjee M, Xie CH, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. Int Society Microb Ecol J. 2014; 8(4): 894–907. https://doi.org/10.1038/ismej.2013.194
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25: 402-408. https://doi.org/10.1006/meth.2001.1262
Gomes AÉI, Stuchi LP, Siqueira NMG, Henrique JB, Vicentini R, Ribeiro ML, et al. Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using Reverse Transcription Quantitative real-time PCR. Sci Rep. 2018; 8(1): 9001. https://doi.org/10.1038/s41598-018-27420-2
Ghafourian S, Bin Sekawi Z, Sadeghifard N, Mohebi R, Neela K, Maleki V, et al. The prevalence of ESBLs producing Klebsiella pneumoniae isolates in some major hospitals, Iran. Open Microbiol J. 2011; 5(1): 91–95. https://doi.org/10.2174/1874285801105010091
Rafiq MA, Shahid M, Jilani K, Aslam MA. Antibacterial, antibiofilm, and anti-quorum sensing potential of novel synthetic compounds against pathogenic bacteria isolated from chronic sinusitis patients. Dose Response. 2022; 20(4): 1–12. https://doi.org/10.1177/15593258221135731
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015; 109(7): 309–318. https://doi.org/10.1179/2047773215Y.0000000030
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018; 10; 11: 1645–1658. https://doi.org/10.2147/IDR.S173867
Anandhi P, Tharani M, Rajeshkumar S, Lakshmi T. Antibacterial activity of cinnamon and clove oil against wound pathogens. J Popul Ther Clin Pharmacol. 2022; 28(2): e41–e46. https://doi.org/10.47750/jptcp.2022.871
Mandal S, DebMandal M, Saha K, Pal NK. In vitro antibacterial activity of three Indian spices against methicillin-resistant Staphylococcus aureus. Oman Med J. 2011; 26: 319–323. https://doi.org/10.5001/omj.2011.80
Al-Hayanni H, El-Shora HM. Various extracts of some medicinal plants as inhibitors for beta-lactamase activity. Bagdad Sci J. 2020; 18(1): 47–53. https://doi.org/10.21123/bsj.2021.18.1.0047
Alaamery SK, Al-Hayanni HS. Antibacterial and anti-biofilm effects of Sumac (Rhus coriaria L) fruits extracts against some multidrug-resistant pathogenic bacteria. J Fac Med Baghdad. 2022; 64(3): 183–188. https://doi.org/10.32007/jfacmedbagdad.6431964
Al-Salmani AKM, Hassan IQ. Evaluation of the antibacterial activity of ethanol extract of Iraqi propolis in vitro on some pathogenic bacteria causing mastitis and pneumonia in cows. Al-Anbar J Vet Sci. 2011; 4(2): 97–104.
Elken EM, Tan Z, Wang Q, Jiang X, Wang Y, Ma H. Impact of sub-MIC Eugenol on Klebsiella pneumoniae biofilm formation via upregulation of rcsB. Front Vet Sci. 2022; 9: 945491. https://doi.org/10.3389/fvets.2022.945491
Adeosun AJ, Baloyi IT, Cosa S. Anti-biofilm and associated anti-virulence activities of selected phytochemical compounds against Klebsiella pneumoniae. Plants. 2022; 11: 1429. https://doi.org/10.3390/plants11111429
Higgas K, Singer M, Valappil T, Nambiar S, Lin D, Cox E. Overview of recent studies of community acquired pneumonia. Clin Infect Dis. 2008; 47(2): 150–156. https://doi.org/10.1086/591397
Vasconcelos NG, Silva KE, Croda J, Simionatto S. Antibacterial activity of Cinnamomum cassia L. essential oil in a carbapenem- and polymyxin-resistant Klebsiella aerogenes strain. Rev Soc Bras Med Trop. 2020; 53: e20200032. https://doi.org/10.1590/0037-8682-0032-2020
El-Atki Y, Aouam I, El Kamari F, Taroq A, Nayme K, Timinouni M, et al. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J Adv Pharm Technol Res. 2019; 10(2): 63–67. https://doi.org/10.4103/japtr.JAPTR_366_18
Mirpour M, Gholizadeh S Z, Sharifi K M. Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. J Oral Biol Craniofac Res. 2015; 5(1): 7–10. https://doi.org/10.1016/j.jobcr.2015.02.002
Liu W, Chen G, Dou K, Yi B, Wang D, Zhou Q, et al. Eugenol eliminates carbapenem-resistant Klebsiella pneumoniae via reactive oxygen species mechanism. Front Microbiol. 2023; 16; 14: 1090787. https://doi.org/10.3389/fmicb.2023.1090787
Bahjat SA. Evaluation of antibacterial and antibiofilm activity of cinnamon, clove, Eucalyptus, and tea tree oils against oral streptococci. Rafidain J Sci. 2019; 28(3): 1–14.
Sheng L, Rasco B, Zhu MJ. Cinnamon oil inhibits shiga toxin type 2 phage induction and shiga toxin type 2 production in Escherichia coli O157:H7. Appl Environ Microbiol. 2016; 82(22): 6531–6540. https://doi.org/10.1128/aem.01702-16
Rajkowska K, Nowicka-Krawczyk P, Kunicka-Styczyńska A. Effect of clove and thyme essential oils on Candida biofilm formation and the oil distribution in yeast cells. Molecules. 2019; 24(10): 1954. https://doi.org/10.3390/molecules24101954
Slusarenko AJ, Patel A, Portz D. Control of plant disease by natural products: Alicin from garlic as a cases study. Eur J Plant Pathol. 2008; 121(3): 313–322. https://doi.org/10.1007/s10658-007-9232-7
Adedeji B, Abdulkadir O. Etiology and antimicrobial resistance pattern of bacterial agents of urinary tract infections in students of tertiary institutions in yola metropolis. Adv Biol Res. 2009; 3(3–4): 67–70.
Topa SH, Palombo EA, Kingshott P, Blackall LL. Activity of cinnamaldehyde on quorum sensing and biofilm susceptibility to antibiotics in Pseudomonas aeruginosa. Microorganisms. 2020; 8(3): 455. https://doi.org/10.3390/microorganisms8030455
Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, et al. Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa. PLoS One. 2015; 10(8): e0135495. https://doi.org/10.1371/journal.pone.0135495
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Zahraa Eisaa Sadeq, Inam Jasim Lafta, Samah Ali Lamburne
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.