استكشاف مورفولوجيا، البنية، والخصائص البصرية للمتراكب النانوي اوكسيد بورات سماريوم النحاس
DOI:
https://doi.org/10.21123/bsj.2024.10351الكلمات المفتاحية:
أوكسيد بورات سماريوم النحاس ,تقنية الهيدروثرمال, لانثانيد , مورفولوجيا , مواد الأتربة النادرة.الملخص
تضمنت الدراسة تحضير اغشية رقيقة من المتراكب النانوي الجديد اوكسيد بورون سماريوم النحاس (CSmBO) بنجاح باستخدام طريقة solvothermal الملدن عند 350 درجة مئوية لمدة 3 ساعات. وتم توصيفها باستخدام المجهر الإلكتروني الماسح للمجال (FESEM) ، مطياف الأشعة السينية ذات طاقة التشتيت (EDX) ، ومطياف UV-VIS . كشف تحليل المجهر الإلكتروني الماسح للحقل (FESEM) عن اغشية موحدة وكثيفة مع جزيئات نانوية تتراوح في حجمها من 21.49 إلى 96.51 نانومتر. أكد مطياف الأشعة السينية ذات طاقة التشتيت (EDX) على التركيب العنصري للمتراكب النانوي (CSmBO)، مما يثبت النجاح في دمج النحاس والسماريوم والبورون.أشارت أنماط حيود الأشعة السينية إلى تكوين مرحلة بلورية بدرجة عالية من الإجهاد والعيوب، وهو ما يعزى إلى تكتل الجسيمات النانوية. أظهرت المتراكبات النانوية المصنعة قابلية ضبط ملحوظة في الشكل والبنية. كما كشف مطياف UV-Vis عن طيف امتصاص ضوئي واسعًا مع ذروة امتصاص قصوى عند 600 نانومتر، مما يدل على إمكانية استخدام الأفلام الرقيقة المركبة لأكسيد بورون سماريوم النحاس في تطبيقات الإلكترونيات الضوئية. قدرت الفجوة النطاقية الضوئية (Eg) بحوالي 2.03 الكترون فولت، وكانت طاقة Urbach (Eu) 0.15 الكترون فولت، مما يشير إلى درجة منخفضة نسبيًا من حالات ذيل النطاق الموضعي. يبرز التصنيع الناجح للأفلام الرقيقة المركبة لأكسيد بورون سماريوم النحاس بخصائص قابلة للضبط إمكانية استخدام هذا المركب لمجموعة متنوعة من التطبيقات الإلكترونيات الضوئية، بما في ذلك حصاد الطاقة الشمسية والتحفيز الضوئي والصمامات الثنائية الباعثة للضوء.
Received 02/12/2023
Revised 12/03/2024
Accepted 14/03/2024
Published Online First 20/11/2024
المراجع
Tapak NS, Nawawi MA, Mohamed AH, Tjih ETT, Mohd Y, Rashid AHBA, et al. Chemical Synthesis of Metal Oxide Nanoparticles Via Ionic Liquid As Capping Agent: Principle, Preparation and Applications. Malaysian J Anal Sci MJAS 2022;26(6): 1394–1420. https://mjas.analis.com.my/mjas/v26_n6/pdf/Tapak_26_6_18.pdf .
Alam S, Chowdhury MA, Shahid A, Alam R, Rahim A. Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects. FlatChem. 2021; 30: 100305. https://doi.org/10.1016/j.flatc.2021.100305 .
Shaker DS, Abass NK, Ulwall RA. Preparation and study of the Structural, Morphological and Optical properties of pure Tin Oxide Nanoparticle doped with Cu. Baghdad Sci J. 2022; 0660-0660. http://dx.doi.org/10.21123/bsj.2022.19.3.0660 .45870eac05426706.pdf .
Khalaf WM, Al-Mashhadani MH. Synthesis and characterization of lanthanum oxide la2o3 net-like nanoparticles by new combustion method. Biointerface Res App. 2022; 12(3): 3066–3075. https://doi.org/10.33263/BRIAC123.30663075 .
Ubale SB, Ghogare TT, Lokhande VC, Ji T, Lokhande CD. Electrochemical behavior of hydrothermally synthesized porous groundnuts-like samarium oxide thin films. SN Appl Sci. 2020; 2(4):756. https://doi.org/10.1007/s42452-020-2467-z .
Filho WL, Kotter R, Özuyar PG, Abubakar IR, Eustachio JHPP, Matandirotya NR. Understanding Rare Earth Elements as Critical Raw Materials. Sustainability (Switzerland). 2023; 15(3): 1919. https://doi.org/10.3390/su15031919 .
Artiushenko O, da Silva RF, Zaitsev V. Recent advances in functional materials for rare earth recovery: A review. SM&T .Elsevier B.V. 2023; 37(August): e00681. https://doi.org/10.1016/j.susmat.2023.e00681 .
Purba FJ, Sitorus Z, Tarigan K, Siregar N. Enhanced photocatalytic activity of Cu2O/ZnO/GO nanocomposites on the methylene blue degradation. Baghdad Sci. J. 2024; 0062-0062. https://doi.org/10.21123/bsj.2023.8087 .
M. Q. Kareem, M. M. Ameen, S. A. Hassan, and S. M. Shareef.Synthesis of Tetrahedrite Zincian Nanocomposites via solvothermal process at low temperature. Ceram Int, vol. 50, no. 20, Part B, pp. 40005–40013, 2024, doi: https://doi.org/10.1016/j.ceramint.2024.07.385.
Balaram V, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front. Elsevier Ltd; 2019; 10(4): 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005.
Gurunath LN, Bidve A , Synthesis and Characterization of Lanthanum Oxide Doped Polyaniline (PANI/La 2 O 3 ). J Surv Fish Sci. 2023; 10(4S): 1023–1028. https://doi.org/10.17762/sfs.v10i4S.1124 .
Shah H, Afzal S, Usman M, Shahzad K, Ikhioya IL. Impact of Annealing Temperature on Lanthanum Erbium Telluride (La0.1Er0.2Te0.2) Nanoparticles Synthesized via Hydrothermal Approach. Adv J Chem A. 2023; 6(4): 342–351. https://doi.org/10.22034/AJCA.2023.407424.1386 .
Colera ES, Tardío M,Tabarés EG, Perea B, Crespillo ML, Muñoz-Santiuste JE, et al. Development of Luminescent Nd-Doped LaNbO Compound Thin Film Growth by Magnetron Sputtering for the Improvement of Solar Cells. Crystals. 2023; 13(2): 159 https://doi.org/10.3390/cryst13020159 .
Barad C, Kimmel G, Hayun H, Shamir D, Hirshberg K. Phase stability of nanocrystal line grains of rare-earth oxides (Sm2O3 and Eu2O3) confined in magnesia (MgO) matrix. mater 2020; 13(9): 2201. https://doi.org/10.3390/ma13092201
Balamurugan A, Sudha M, Surendhiran S, Anandarasu R, Ravikumar S, Syed Khadar YA. Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: Characterization and antibacterial activity. Mater Today: Proc. 2019: 3588–3594. https://doi.org/10.1016/j.matpr.2019.08.217 .
Mackie AJ, Dean JS, Goodall R. Material and magnetic properties of Sm2(Co, Fe, Cu, Zr)17 permanent magnets processed by Spark Plasma Sintering. J Alloys Compd. 2019; 770: 765–770. https://doi.org/10.1016/j.jallcom.2018.08.186 .
Khasim S, Ramakrishna BN, Pasha A, Manjunatha SO. Structural, Optical, Magnetic, and Electrical Properties of Samarium (Sm3+)-Doped Copper–Iron Oxide Ferrites for Possible Optoelectronic Applications. J Electron. Mater. 2024; 53(2): 801–814. https://doi.org/10.1007/s11664-023-10797-w .
Jamdar M, Goudarzi M, Dawi EA, Mahdi MA, Jasim LS, Salavati-Niasari M. Synthesis of SmMnO3/Sm2O3 nanocomposites as efficient photocatalysts for organic dye degradation by sol gel pechini method. Results Eng. 2024;21(December 2023): 101650. https://doi.org/10.1016/j.rineng.2023.101650 .
Li M, Wang N, Zhang S, Hu J, Xiao H, Gong H, et al. A review of the properties, synthesis and applications of lanthanum copper oxychalcogenides. J Phys D: Appl Phys. {IOP} Publishing; 2022; 55(27): 273002. https://doi.org/10.1088/1361-6463/ac4b71 .
Sadeq MS, Morshidy HY. Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate glasses with constant copper chloride. J Rare Earths. 2020; 38(7): 770-775. https://doi.org/10.1016/j.jre.2019.11.003 .
Cosico JAM, Marquez MC. Sonochemically assisted samarium doped copper (I) oxide nanostructures as potential component in PN junction. Key Eng Mater. 2020; 853: 73-77. https://doi.org/10.4028/www.scientific.net/KEM.853.73 .
Borik M, Chislov A, Kulebyakin A, Lomonova E, Milovich F, Myzina V, et al. Phase Composition and Mechanical Properties of Sm2O3 Partially Stabilized Zirconia Crystals. [Online] Crystals. 2022; 12(11): 1630 . https://doi.org/10.3390/cryst12111630 .
Narenthiran B, Manivannan S, Sharmila S, Shanmugavani A,Ramulu PJ. Influence of Samarium on Structural, Morphological, and Electrical Properties of Lithium Manganese Oxide. Adv Mater Sci Eng. 2023; 2023(special issue):10. https://doi.org/10.1155/2023/8331899 .
Kareem MQ. Study Optical Properties of (GA) Polysaccharide/Polyvinyl alcohol thin films. Tikrit j pure sci. 2018; 20(4): 120–124. https://www.iasj.net/iasj/download/6128c92a9e14107d .
Mahmoud ZH, Al-Bayati RA, Khadom AA. In situ Polymerization of Polyaniline/Samarium Oxide-Anatase Titanium Dioxide (PANI/Sm2O3-TiO2) Nanocomposite: Structure, Thermal and Dielectric Constant Supercapacitor Application Study. J Oleo Sci.2022; 71(2): 311–319. https://doi.org/10.5650/jos.ess21283 .
Lin J, Chen H, Kang J, Quan LN, Lin Z, Kong Q, et al. Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters. Matter . 2019; 1(1): 180–191. https://doi.org/10.1016/j.matt.2019.05.027 .
Jamdar M, Heydariyan Z, Alzaidy AH, Dawi EA, Salavati-Niasari M. Eco-friendly auto-combustion synthesis and characterization of SmMnO3/Sm2O3/Mn2O3 nanocomposites in the presence of saccharides and their application as photocatalyst for degradation of water-soluble organic pollutants. Arab J Chem. 2023; 16(12): 105342. https://doi.org/10.1016/j.arabjc.2023.105342 .
Srinet G, Sharma S, Kumar M, Anshul A. Structural and optical properties of Mg modified ZnO nanoparticles: An x-ray peak broadening analysis. Phys E: Low-Dimens Syst. Nanostruct 2021; 125(2021): 114381. https://doi.org/10.1016/j.physe.2020.114381 .
Zaid MHM, Sidek HAA, El-Mallawany R, Almasri KA, Matori KA. Synthesis and characterization of samarium doped calcium soda-lime-silicate glass derived wollastonite glass-ceramics. J. Mater. Res. Technol. [Internet]. J Mater Res Technol. 2020; 9(6): 13153–13160. https://doi.org/10.1016/j.jmrt.2020.09.058 .
Abdel- wahab M Sh , Ibrahim AM , Farghali AA, Tawfik WZ . Sputtered nanocrystalline samarium doped CuO photoelectrode for efficient photoelectrochemical water splitting. Mater Today Commun. 2023; 37: 107122.https://doi.org/10.1016/j.mtcomm.2023.107122 .
Kilic G, Issa Sh AM, Ilik E, Kilicoglu O, Issever UG, El-Mallawany R, et al. Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses. [Online] Ceram. Int. 2021; 6154–6168. https://doi.org/10.1016/j.ceramint.2020.10.194 .
Kareem MQ, Hassan SA, Ameen MM. Doping Effect ((COCl2. 6H2O) & (CuCl2. 6H2O)) (2%) w/v on Optical Energy gap of (GA/PVA) composite films. Tikrit j pure sci. 2015; 20(1): 114–119. https://www.iasj.net/iasj/download/78c0eb6cf1a5dc61
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Mohanad Q. Kareem , Sarab M. Shareef Shareef , Maad M. Ameen , Sozan A. Hassan , Shaheen S. Alimardan
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.