التباين الزمني لتركيزات النترات في نبع الكارست في الجزء الغربي من منطقة جونونجسيوو كارست، جزيرة جاوة، إندونيسيا

المؤلفون

  • Ahmad Cahyadi قسم الجغرافيا البيئية، كلية الجغرافيا، جامعة غادجاه مادا، يوجياكرتا، إندونيسيا. https://orcid.org/0000-0002-1814-4016
  • Indra Agus Riyanto قسم دراسة علوم المعلومات الجغرافية، كلية العلوم والتكنولوجيا والهندسة والرياضيات، جامعة ماهاكاريا آسيا، يوجياكرتا، إندونيسيا.

DOI:

https://doi.org/10.21123/bsj.2024.10610

الكلمات المفتاحية:

النترات، نبع الكارست، النمط المحصولي، تطور الكارست، التباين الزمني

الملخص

أصبح وجود النترات في الماء مصدر قلق للعديد من علماء البيئة لأنه أدى إلى انخفاض جودة المياه المستخدمة لتلبية احتياجات الناس من المياه النظيفة. من المتوقع أن توفر دراسة التغير الزمني للنترات في تدفق المياه فهمًا كاملاً للعوامل المؤثرة التي يجب إدارتها للتحكم في تركيز النترات في الماء. تهدف هذه الدراسة إلى تحليل التغيرات الزمنية في تركيز النترات في نبع جونتور، أحد الينابيع في منطقة جونونجسيو كارست والذي يلعب دورًا في توفير المياه النظيفة. تشمل البيانات المستخدمة في هذا البحث بيانات عن تركيز النترات في مياه الينابيع، وهطول الأمطار، وتصريف الينابيع. تم إجراء أخذ العينات كل أسبوعين من فبراير 2018 إلى مارس 2019 لفهم التباين الزمني في تركيزات النترات. تم الحصول على بيانات التصريف وهطول الأمطار من التسجيل التلقائي خلال نفس فترة أخذ عينات المياه لتحليل النترات. وتظهر النتيجة أن تركيز النترات على مدار العام في نبع جونتور لا يتجاوز معايير الجودة. ترجع جودة المياه الجيدة إلى عملية الترشيح الطبيعية التي لا تزال تسير بشكل جيد بسبب انخفاض مستوى الكارستات الذي لا تزال تهيمن عليه تدفقات الشقوق. بالإضافة إلى ذلك، وجد هذا البحث أن الاختلاف الأكثر تأثيرًا في تركيز النترات في تدفق الربيع في جونتور سبرينج هو نمط المحاصيل في المنطقة. 

المراجع

Aires A, Carvalho R, Rosa EAS, Saavedra MJ. Effect of Agriculture Production System on Nitrate and Nitrite on Baby-Leaf Salads. Food Nutr. 2012; 1(1): 3-7. https://doi.org/10.1002/fsn3.1

Khouri L, Al-Mufti MB. Assessment of Surface Water Quality Using Statistical Analysis Methods: Orontes River (Case Study). Baghdad Sci J. 2022; 19(5); 981-989. https://doi.org/10.21123/bsj.2022.6262

Lawniczak AE, Zbierska J, Nowak B, Achtenberg K, Greześkowik A, Kanas K. Impact of Agricultural and Land Use on Nitrate Contamination in Groundwater and Running Water in Central-West Poland. Environ Monit Assess. 2016. 188(172): 1-17. https://doi.org/10.1007/s10661-016-5167-9

Xu L, Niu H, Xu J, Wang X. Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China. Sci World J. 2013; 2: 1-10. https://doi.org/10.1155/2013/353086

Nashaat MR, Al-Bahathy IAA. Impct of Hidiya Dam on the Limnological Features of Euphrates River to the North of Babil Goverorate, Iraq. Baghdad Sci J. 2022; 19(3): 447-459. https://doi.org/10.21123/bsj.2022.19.3.0447

Clune JW, Cravotta, CA, Admin H, Dozier HJ, Schimdt KE. Complex Hydrology and Variability of Nitrogen Sources in a Karst Watershed. J Environ Qual. 2024; 53(4): 492-507. https://doi.org/10.1002/jeq2.20578

Zhongfa Z, Shengjun D, Yong X, Liangxing S, Dan S, Xiaohuan G, Hui D, Lihui Y. Nitrate Sources and Their Influence on Hydrogeochemistry in Karst Caves of Southwest China. Int. J Earth Sci. 2023; 112(8): 2325-2338. https://doi.org/10.1007/s00531-023-02343-0

Singh B, Singh Y, Sekhon GS. Fertilizer-N Use Efficiency and Nitrate Pollution of Groundwater in Developing Contries. J Contam Hydrol. 1995; 20(1): 167-184. https://doi.org/10.1016/0169-7722(95)00067-4

Sidiropoulus P, Tziatzios G, Vasiliades L, Mylopoulos N, Loukas A. Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploied Aquifer. Water. 2019; 11: 1-24. https://doi.org/10.3390/w11061201

Archna, Sharma SK, Sobti RC. Nitrate Removal from Groundwater : A Review. E-J Chem. 2012; 9(4): 1667-1675. https://doi.org/10.1155/2012/154616

Yue FJ, Waldron S, Li SL, Wang ZJ, Zeng J, Xu S, et al. Land Use Interacts with Changes in Catchment Hydrology to Generate Chronic Nitrate Pollution in Karst Waters and Strong Seasonality in Excess Nitrate Export. Sci Total Environ. 2019; 696. https://doi.org/10.1016/j.scitotenv.2019.134062

Al Sharaa HMJ, Ziboon ART, Al Obaidy AHMJ. Detection Nutrients and Major Ions at Al Muthanna Storage Site Soil. Baghdad Sci J. 2019; 16(4): 959-965. http://dx.doi.org/10.21123/bsj.2019.16.4(Suppl.).0959

Sunitha V. Nitrates in Groundwater : Health Hazards and Remedial Measures. Indian J Adv Chem Sci. 2013; 1(3): 164-170.

Shamsuddin AS, Ismail SNS, Abidin EZ, Bin HY, Juahir H. Contamination of Nitrate in Groundwater and Evaluation of Health Risk in Bachok, Kelantan: A Cross-Sectional Study. Am J App Sci. 2016; 13(1): 80-90. https://doi.org/10.3844/ajassp.2016.80.90

Al-Araji KHY. Evaluation of Physical Chemical and Biological Characteristucs of Underground Wells in Badra City, Iraq. Baghdad Sci J. 2019; 16(3): 560-570, https://doi.org/10.21123/bsj.2019.16.3.0560

Oehler T, Putra D, Adyasari D, Henning H, Mallast Ulf, Moosdorf N. Timing of Land-Ocean Groundwater Nutrient Fluxes from a Tropical Karstic Region (Southern Java, Indonesia). Hydrol. Earth Sys Sci. 2017: 1- 18. https://doi.org/10.5194/hess-2017-621

Marwan DA, Haryono E, Pitoyo AJ, Adji TN, Ramadhan GS. Analysis of Water Quality Status on Sumurup River, Gunungkidul Regency. J Tekno Ling. 2023; 24(2): 127-136. https://doi.org/10.55981/jtl.2023.989

Widyastuti M, Irshabdillah MR, Firizqi F. Water Quality Analysis of Bribin Underground River as the Sources of Raw Water for Government-Owned Water Company (PDAM) in the Bribin Management Unit, Gunungkidul Regency-Indonesia. IOP Conf Ser Earth Environ Sci. 2020; 451. https://doi.org/10.1088/1755-1315/451/1/012065

Budiyanto E, Muzayanah M, Kurniawati A, Purnomo NH. Effect of Volcanic Sand-Biocarbon-Zeolith Filtration on pH, EC, and TDS Values of Karst Groundwater. Geomedia. 2023; 21(1): 85-95. https://doi.org/10.21831/gm.v21i1.57538

Gao Y, Xu Z, Li S, Yu W. Modeling Monthly Nitrate Concentration in a Karst Spring with and without Discrete Conduit Flow. Water. 2022; 14. https://doi.org/10.3390/w14101622

Doerfliger N, Jeannin PY, Zwahlen F. Water Vulnerability Assessment in Karst Environments: a New Method of Defining Protection Area Using a Multi-Attribute Approach and GIS Tools (EPIK Method). Environ Geol. 1999; 2(39): 165-176. https://doi.org/10.1007/s002540050446

Kalvans A, Popovs K, Priede A, Koit O, Retike I, Bikse J, Delina A, Babre A. Nitrate Vulnerability of Karst Aquifers and Assosiated Groundwater-Dependent Ecosystem in the Baltic Region. Environ Earth Sci. 2021; 80. https://doi.org/10.1007/s12665-021-09918-7

Haryono E, Danardono, Mulatsih S, Putro ST, Adji TN. The Nature of Carbon Flux in Gunungsewu Karst, Java-Indonesia. Acta Carsol. 2016; 45(1): 173-185. https://doi.org/10.3986/ac.v45i2.4541

Matiatos I, Varouchakis EA, Papadopoulou. Performance Evaluation of Multiple Groundwater Flow and Nitrate Mass Transport Numerical Models. Environ Monit Assess. 2019; 25: 659-675. https://doi.org/10.1007/s10666-019-9653-7

Lahjouj A, El Hmaidi A, Bouhafa K. Spatial and Statistical Assessment of Nitrate Contamination in Groundwater: Case of Sais Basin, Morocco. J Groundw Sci Eng. 2020; 8(2): 143-157. https://doi.org/10.19637/j.cnki.2305-7068.2020.02.006

Riyanto IA, Widaystuti M, Cahyadi A, Agniy RF, Adji TN. Groundwater Management Based on Vulnerability to Contamination in the Tropical Karst Region of Guntur Spring, Gunungsewu Karst, Java Island, Indonesia. Environ Process. 2020; 7(3): 1277–1302. https://doi.org/10.1007/s40710-020-00460-5

Cahyadi A, Haryono E, Adji TN, Widyastuti M, Riyanto IA, Muhammad DTN, Tastian NF. Rainfall Variability in Gunungsewu Karst Area, Java Island, Indonesia. Indones J Res. 2021; 8(1): 23-35. https://doi.org/10.20886/ijfr.2021.8.1.23-35

Rashad S, Moneem MA, El-Chaghaby G. Seasonal Variation and Correlation between the Physical, Chemical and Microbiological Paramaters of Nile Water in Selected Area in Egypt (Case Study). Baghdad Sci J. 2020; 17(4): 1160-1168. https://doi.org/10.21123/bsj.2020.17.4.1160

Riyanto IA, Cahyadi A. Anthropogenic Activity Effect on Water Quality of Epikarst Spring in the Western Part of Gunungsewu Karst Area, Java Island, Indonesia. J Degrad Min Lands Manag. 2023; 11(1): 4899-4908. https://doi.org/10.15243/jdmlm.2023.111.4899

Rahardjo W, Sukandarrumidi, Rosidi HMD. 1995. Geologic Map Sheet Yogyakarta, Java scale 1:100,000. Bandung: Geological Agency, Ministry of Energy and Mineral Resources, Republic of Indonesia.

Ansori C, Setiawan NI, Warmada AW, Yogaswara H. Identification of Geodiversity and Evaluation of Geosites to Determine Geopark Themes of the Karangsambung-Karangbolong National Geopark, Kebumen, Indonesia. 2022; 10(1): 1-15. https://doi.org/10.1016/j.ijgeop.2022.01.001

Mulyaningsih S, Tania D, Heriyadi NAAT, Suhartono S. Mentoring and Training in Developing Gunung Ireng Geotourism, Patuk District, Gunungkidul Regency, Yogyakarta Special Region. Indones J Comm Engage. 2021; 7(4):265-272. https://doi.org/10.22146/jpkm.61150

Blessia SA, Mulyaningsih S, Tania D, Heriyadi NWAAT, Suhartono S. Volcanostratigraphic Study of Gunung Ireng, Pengkok Village, Patuk District, Gunungkidul Regency-DIY. J Teknomineral. 2019; 1(1): 24-33.

Widiyastuti AN, Widyastuti M. Potential of Spring to Fulfill Domestic Water Needs of Playen Karst Area Community, Gunungkidul Based on Temporal Variation (Potensi Mataair untuk Memenuhi Kebutuhan Air Domestik Masyarakat Kawasan Karst Playen, Gunungkidul berdasarkan variasi temporal). J Bumi Indones. 2018; 7(3): 1-11. (in Indonesian)

Widyastuti M, Riyanto IA, Naufal M, Ramadhan F, Rahmawati N. Catchment area analysis of Guntur Karst Spring, Gunungkidul Regency, Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019; 256. https://doi.org/10.1088/1755-1315/256/1/012008

Ramadhan, F. 2019. Relationship between flow characteristics and hydrogeochemistry of Guntur Spring in Gunungsewu Karst Area (Hubungan karakteristik aliran dengan Hidrogeokimia Mataair Guntur di Kawasan Karst Gunungsewu). B.Sc. Thesis. Yogyakarta: Faculty of Geography, Univeristas Gadjah Mada. 133 pp. (in Indonesian)

Sulistiyowati E, Setiadi S, Haryono E. The Dynamics of Sustainable Livelihoods and Agroforestry in Gunungkidul Karst Area, Yogyakarta, Indonesia. Forest and Society. 2023; 7(2): 222–246. https://doi.org/10.24259/fs.v7i2.21886

Prabudimas CA, Budiyanto E. Characterization of Inter-Hill Valley Vegetation Cover in the Eastern Gunungsewu Karst Region in Ponjong Subsitrict (Karakterisasi Tutupan Vegetasi Lembah Antar Bukit di Wilayah Karst Gunungsewu Bagian Timur di Kecamatan Ponjong). Swara Bhumi. 2020; 1(1): 1-7. (in Indonesian)

Stigter TY, Ribeiro L, Dill AMMC. Evaluation of an Intrinsic and a Specific Vulnerability Assessment Method in Comparison with Groundwater Salinization and Nitrate Contamination Levels in Two Agricultural Regions in the South of Portugal. Hydrogeol J. 2005; 14(1): 79–99. https://doi.org/10.1007/s10040-004-0396-3

Chen J, Luo M, Ma R, Zhou H, Zou S, Gan Y. Nitrate Distribution Under the Influence of Seasonal Hydrodunamic Changes and Human Activities in Huixian Karst Wetland, South China. J Contam Hydrol. 2020; 234 https://doi.org/10.1016/j.jconhyd.2020.103700

Wenqiang Z, Yue T, Fei T, Jinxiao W, Qingyu X, Hailin Z. Groundwater Hydrochemical Characteristics and Evolution of the Karst Water System in the Feicheng Fault Block in Shandong Province. Carsol Sinica. 2023; 42(5): 1047-1060. https://doi.org/10.11932/karst20230515

Yang P, Wang Y, Wu X, Chang L, Ham B, Song L, Groves C. Nitrate Sources and Biogeochemical Processes in Karst Underground Rivers Impacted by Different Antropogenic Input Characteristics. Environ Pollut. 2020; 265. https://doi.org/10.1016/j.envpol.2020.114835

Yan-Bi W, Zhong-Fa Z, Jie K, Cui W, Yan Z, Fu-Qiang Z, Li L. Tracing and Estimation of Nitrate Sources Based in Hydrochemistry and Nitrogen and Oxygen Isotopes in Karst Mountainous Water: A Case Study of the Pingzhai Reservoir. China Environ Sci. 2023. 43(10): 5265-5276. http://www.zghjkx.com.cn/EN/Y2023/V43/I10/5265

Astuti ES. Haryono E. Seasonal Variability of Nitrate Flux in the North Part of Karangbolong Karst Aquifer, Central Java. E3S Web Conf. 2020; 200. https://doi.org/10.1051/e3sconf/202020006009

Adji TN, Mujib MA, Haryono E, Fatchurohman H, Kholis AN. Simplified Approach in Karst Aquifer Characterization by Using Discharge Variability, Storage Capacity, and Void Development: A Preliminary Study in the Tropical Karst Region. Kuwait J Sci. 2023; 50(4): 812–822. https://doi.org/10.1016/j.kjs.2023.05.012

Naufal M, Adji TN, Cahyadi A, Haryono E. Widyastuti M, Riyanto IA, et al. Estimated Rate of Karst Aquifer Development by MRC Analysis and Flood Hydrograph Components at Guntur Springs, Gunungsewu Karst Area, Indonesia. E3S Web Conf. 2020; 200. https://doi.org/10.1051/e3sconf/202020002007

Naufal M, Adji TN, Haryono E, Cahyadi A. Assessing Karst Landscape Degradation Based on the Void Development of Karst Akuifer in Gunungsewu, Indonesia. J Degrad Min Lands Manag. 2024; 11(3): 1001-1009. https://doi.org/10.15243/jdmlm.2024.113.0000

Visser AN, Lehmann MF, Rugner H, D’Affonseca FM, Grathwohi P, Blackwell N, et al. Fate of Nitrate During Groundwater Recharge in a Fractured Karst Aquifer in Southwest Germany. Hydrogeol J. 2021; 29: 1153-1171. https://doi.org/10.1007/s10040-021-02314-2

Huebsch M, Fenton O, Horan B, Hennessy,D, Richards KG, Jordan P, Goldsceider N, Butcher C, Blum P. Mobilisation or Dilution? Nitrate Response of Karst Springs to High Rainfall Events. Hydrol Earth Sys Sci., 2014; 18(11): 4423-4435. https://doi.org/10.5194/hess-18-4423-2014

Al-Kenzawi MAH, Al-Haidary MJS, Talib AH, Karomi MF. Environmental Study of Some Water Characteristics at Um-Al-Naaj Marsh, South of Iraq. Baghdad Sci J. 2011; 8(1): 531-538. https://doi.org/10.21123/bsj.2011.8.1.531-538

Wang, ZJ, Li SL, Yue, FJ, Qin CQ, Buckerfield S. Rainfall Driven Nitrate Transport in Agricultural Karst Surface River System: Insight from High Resolution Hydrochemistry and Nitrate Isotope. Agric Ecosyst Environ. 2020; 291. https://doi.org/10.1016/j.agee.2019.106787

Wang K, Chen X, Wu Z, Wang M, Wang H. Traceability and Biogeochemical Process of Nitrate in the Jinan Karst Spring Catchment, North China. Water. 2023; 15. https://doi.org/10.3390/w15152718

Fazaa NA, Dunn JC, Whittingham MJ. Pollution Threatnes Water Quality in the Central Marshes of Southern Iraq, Baghdad Sci J. 2021; 18(4): 1501-1513. https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1501

Qader MQ, Shekha YA. Using Microalga Coelastrella sp. to Remove Some Nutrients from Wastewater Invitro. Baghdad Sci J. 2023; 20(4): 1218-1227. https://doi.org/10.21123/bsj.2023.7457

Salman JM, Al-Shammary AAS. Monitoring Lotic Ecosystem by the Application of Water Quality Index (CCMEWQI). Baghdad Sci J. 2020; 17(1): 23-27. https://doi.org/10.21123/bsj.2020.17.1.0023

Al-Sudani IM. Water Quality Assessment of Tigris River Using Overall Index of Pollution (OIP). Baghdad Sci J. 2021; 18(2): 1095-1102. https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1095

Li H, Wu J, Qi Y, Su C, Jiang D, Zhou P. Identification of Groundwater Pollution Sources and Health Risk Assessment in the Fengsui Mining Area of Central Shandong, China. Environ Sci Pollut Res. 2024; 31: 24412-24424. https://doi.org/10.1007/s11356-024-32713-3

Lyons KJ, Ikonen J, Hokajärvi AM, Räsänen T, Pitkänen T, Kauppinen A, Kujala K, Rossi PM, Miettinen. Monitoring Grounwater Quality with Real-time Data, Stable Water Isotopes, and Microbial Community Analyasis: A Comparison with Conventional Methods. Sci Total Environ. 2023; 864. https://doi.org/10.1016/j/scitotenv.2022.161199

Department of Planning and Environment, State of New South Wales, Australia. Guide to Groudwater Management in NSW. 2023. New South Wales, Australia: Department of Planning and Environment. 72 pp.

Matham PK, Kolagani N, Pattanayak S, Shankari U. Developing a Community Based Participatory Model for Efficient and Sustainable Use of Groundwater – An Exploratory Research using System Dynamics in a Village in South India. 2023. Sustain Dev. 2023; 23. https://doi.org/10.1016/j.gsd.2023.101977

Widiyanti BL. Water Quality Study ad a Way of Community Behaviour in Environmental Management in East Lombok Regency. IOP Conf Ser Earth Environ Sci. 2021; 683. https://doi.org/10.1088/1755-1315/683/1/012140

Daluwette DDS, Sivakumar SS, Mutua F. Community Empowerment with Community Based Water Societies in Rural Areas Driving them for Community Development Equipping for Development and Policy Dialogue. Glob Sci J. 2020; 8(10): 518-525.

Currell MJ, Katz BG. Threats to Springs in a Changing World: Science and Policies for Protection. New Jersey: John Willey and Sons, Inc. 2023. Chap11: 157-170. https://doi.org/10.1002/9781119818625.ch11

Fuster R, Silva-Urrutia K, Escobar-Avaria C, Valdes-Negroni JM, Abrigo-Corneo G, Moya-Jofre H. Community Management of Groundwater under a Private Property Regime: An Example of Institutional Local Adaptation to Overexploitation Problems in the Copiapo Aquifer, Chile. Water. 2023. 15(24): 4257. https://doi.org/10.3390/w15244257

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
التباين الزمني لتركيزات النترات في نبع الكارست في الجزء الغربي من منطقة جونونجسيوو كارست، جزيرة جاوة، إندونيسيا. Baghdad Sci.J [انترنت]. [وثق 21 نوفمبر، 2024];22(2). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10610