تشخيص الكربون المنشط بكلوريد البوتاسيوم المشتق من قشور الجوز في جزيرة تيدور، إندونيسيا

المؤلفون

  • ديوي كيتوت أنوم قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة نيجري مانادو، إندونيسيا. https://orcid.org/0009-0003-4615-382X
  • تشاليب بول ماناري قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة نيجري مانادو، إندونيسيا. https://orcid.org/0000-0002-4828-3092
  • ماريانوس قسم الفيزياء، كلية الرياضيات والعلوم الطبيعية، جامعة نيجري مانادو، إندونيسيا. https://orcid.org/0000-0003-3015-8231
  • جوني زيث لومبوك قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة نيجري مانادو، إندونيسيا. https://orcid.org/0009-0003-4615-382X
  • سابريزال هاديسابوترا قسم تعليم الكيمياء، كلية تدريب المعلمين والتعليم، جامعة ماتارام، إندونيسيا. https://orcid.org/0000-0002-0386-4571
  • ديوا جيدي كاتجا قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة سام راتولانجي، إندونيسيا. https://orcid.org/0000-0003-0228-2825
  • جيفري جاك مامانكي قسم الأحياء، كلية الرياضيات والعلوم الطبيعية، جامعة نيجيري مانادو، إندونيسيا
  • أيسيا ريستوتينينسيه بوتري أوتامي قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة نيجري مانادو، إندونيسيا. https://orcid.org/0009-0008-4533-5898

DOI:

https://doi.org/10.21123/bsj.2024.10684

الكلمات المفتاحية:

الكربون، FTIR، منشط كلوريد البوتاسيوم، EDX-SEM، قشور الجوز، .XRD

الملخص

يعتبر الكربون المنشط ذو قيمة عالية لتعدد استخداماته واستخدامه الصناعي الواسع النطاق. ينتج الجوز (Canarium vulgare Leech)، وهو نبات إندونيسي أصلي يوجد بشكل أساسي في المناطق الشرقية مثل جزر مالوكو وتيدور، قشورًا يمكن تحويلها إلى كربون نشط. تضمنت هذه الدراسة الحصول على الكربون من قشور الجوز من خلال التحلل الحراري عند 360 درجة مئوية لمدة 6 ساعات، يليه التنشيط في محلول 3M KCl لمدة 24 ساعة. تم تحليل الكربون المنشط باستخدام مطيافية تحويل فورييه بالأشعة تحت الحمراء (FTIR)، ومجهر مسح إلكتروني - أشعة سينية مشتتة للطاقة (SEM-EDX)، وحيود الأشعة السينية (XRD). كشف تحليل FTIR عن مجموعات وظيفية بما في ذلك N-H وAr-H (عطري) وC≡N وكربونيل CO وإستر CO. أظهرت صور المجهر الإلكتروني الماسح بنية غير متجانسة في الكربون المنشط بالتحلل الحراري وKCl. بعد التنشيط، زاد توزيع قطر المسام بشكل ملحوظ من 496.2 نانومتر إلى 1226 ميكرومتر. أشار تحليل EDX إلى ارتفاع في محتوى الكربون من 85.40٪ بعد التحلل الحراري إلى 86.50٪ بعد تنشيط كلوريد البوتاسيوم. اقترحت حيود الأشعة السينية هياكل غير متبلورة في كلا الشكلين من الكربون، كما هو موضح من خلال القمم السائبة وأنماط الحيود العريضة. يقدم هذا البحث الاستخدام الجديد لكلوريد البوتاسيوم كمنشط لتعزيز مسامية الكربون المنشط المشتق من قشور الجوز. أظهر الكربون المنشط بكلوريد البوتاسيوم القدرة على إزالة 0.122 مجم / لتر من Fe (III) ، محققًا امتصاص 16.78٪ من Fe (III) في 150 دقيقة. تشير هذه النتائج إلى أن كربون قشور الجوز المنشط بكلوريد البوتاسيوم يمكن أن يكون بديلاً فعالاً للامتصاص لمعالجة المياه النظيفة في المستقبل.

المراجع

Arslan A, Zeybek Y. Using walnut shell based activated carbon for the efficient removal of phosphate from aqueous solution. Sinop Uni J Nat Sci. 2022 Feb; 7(1): 22-40. https://doi.org/10.33484/sinopfbd.1013083

Açıkalın K, Karaca F. Fixed-bed pyrolysis of walnut shell: Parameter effects on yields and characterization of products. J Anal Appl Pyrolysis. 2017 May; 125: 234-242. http://dx.doi.org/10.1016/j.jaap.2017.03.018

Sharahi M, Hivechi A, Bahrami SH, Hemmatinejad N, Milan PB. Co‐electrospinning of lignocellulosic nanoparticles synthesized from walnut shells with poly (caprolactone) and gelatin for tissue engineering applications. Cellulose. 2021 April; 28: 4943-4957. https://doi.org/10.1007/s10570-021-03709-w

Spagnoli AA, Giannakoudakis DA, Bashkova S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J Mol Liq. 2017 March; 229: 465-471. http://dx.doi.org/10.1016/j.molliq.2016.12.106

Wong S, Ngadi N, Inuwa IM, Hassan O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. J Clean Prod. 2018 Feb; 175: 361-375. http://dx.doi.org/10.1016/j.jclepro.2017.12.059

González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev. 2018 Feb; 82(Part 1): 1393-1414. http://dx.doi.org/10.1016/j.rser.2017.04.117

Rashidi NA, Yusup S. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J. 2017 April; 314: 277-290. http://dx.doi.org/10.1016/j.cej.2016.11.059

Hsini A, Naciri Y, Laabd M, El Ouardi M, Ajmal Z, Lakhmiri R, et al. Synthesis and characterization of arginine-doped polyaniline/walnut shell hybrid composite with superior clean-up ability for chromium (VI) from aqueous media: Equilibrium, reusability and process optimization. J Mol Liq. 2020 Oct; 316: 113832. https://doi.org/10.1016/j.molliq.2020.113832

Domingos I, Ferreira J, Luísa P. Cruz-Lopes, Esteves B. Liquefaction and chemical composition of walnut shells. Open Agric. 2022 Feb; 7(1): 249-256. https://doi.org/10.1515/opag-2022-0072

Yusnaini, Suryanto E, Hasan S, Wulansari A, Dewi EK. The Characteristics of Volatile Compounds of Kenari (Canarium indicum L.) Shell Liquid Smoke. IOP Conf Ser Earth Environ Sci. 2021 March; 709(1): 012032. http://dx.doi.org/10.1088/1755-1315/709/1/012032

Olive BOS, Fabien BE, Edwige MA, Anicet NPM, Ateba A. Physico-Chemical and Thermal Characterisation of Canarium Schweinfurthii Engl (Cs) Shells. SSRG Int J Mat Sci Eng. 2021 Nov; 7(3): 9-15. https://doi.org/10.14445/23948884/IJMSE-V7I3P102

Maguie KA, Nsami NJ, Daouda K, Randy CN, Mbadcam KJ, Maguie K, et al. Adsorption Study of the Removal of Copper (II) Ions Using Activated Carbon Based Canarium schweinfurthii Shells Impregnated with ZnCl2. IRA Int J Appl Sci. 2017 Aug; 8(1): 18-30. http://dx.doi.org/10.21013/jas.v8.n1.p2

Sandi K, Syahputra RA, Zubir M. Review Journal Thermodynamics Carbon Active Adsorption Empty Fruit Bunch of Heavy Metal from Liquid Waste. IJCST. 2020 Sep; 3(2): 64-66. http://dx.doi.org/10.24114/ijcst.v3i2.19530

Anand S, Ahmad MW, Syed A, Bahkali AH, Verma M, Kim BH, et al. Walnut shell derived N, S co-doped activated carbon for solid-state symmetry supercapacitor device. J Ind Eng Chem. 2024 Jan; 129: 309-320. https://doi.org/10.1016/j.jiec.2023.08.045

Yang X, Xie D, Wang W, Li S, Tang Z, Dai S. An activated carbon from walnut shell for dynamic capture of high concentration gaseous iodine. Chem Eng J. 2023 Feb; 454(Part 4): 140365. https://doi.org/10.1016/j.cej.2022.140365

Serafin J, Dziejarski B, Junior OFC, Sreńscek-Nazzal J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon. 2023 Jan; 201: 633-647. https://doi.org/10.1016/j.carbon.2022.09.013

Khoshraftar Z, Ghaemi A. Presence of activated carbon particles from waste walnut shell as a biosorbent in monoethanolamine (MEA) solution to enhance carbon dioxide absorption. Heliyon. 2022 Jan; 8(1): e08689. https://doi.org/10.1016/j.heliyon.2021.e08689

Anom IDK. Kinetic Study of Gas Formation in Styrofoam Pyrolysis Process. Acta Chimica Asiana. 2021 Nov; 4(2): 135-140. https://doi.org/10.29303/aca.v4i2.76

Hamadeen M, Elsayed A, Elkhatib A, Mohamed E, Badawy A, Samir A, et al. Novel low cost nanoparticles for enhanced removal of chlorpyrifos from wastewater: sorption kinetics, and mechanistic studies. Arabian J Chem. 2021 March; 14(3): 102981. https://doi.org/10.1016/j.arabjc.2020.102981

Wang L, Guo Y, Zou B, Rong C, Ma X, Qu Y, et al. High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresour Technol. 2011 Jan; 102(2): 1947-1950.https://doi.org/10.1016/j.biortech.2010.08.100

Syafila M, Helmy Q, Musthofa AMH. Methylene blue adsorption by activated carbon and nano– activated carbon from biomass waste. Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan. 2022 Nov; 19(3): 553-565.

Suliestyah, Tuheteru EJ, Yulianti R, Palit C, Yomaki CC, Ahmad SN. Production of activated carbon from coal with H3PO4 activation for adsorption of Fe(II) and Mn(II) in acid mine drainage. JDMLM. 2024 April; 11(3): 5755-5765.

https://doi.org/10.15243/jdmlm.2024.113.5755

Li X, Qiu J, Hu Y, Ren X, He L, Zhao N, et al. Characterization and comparison of walnut shells-based activated carbons and their adsorptive properties. Adsorp Sci Technol. 2020 Dec; 38(9-10): 450-463. http://dx.doi.org/10.1177/0263617420946524

Zhang X, Gao B, Fang J, Zou W, Dong L, Cao C, et al. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere. 2019 March; 218: 680-686. https://doi.org/10.1016/j.chemosphere.2018.11.144

Rini DS, Prasetyo DM, Adawi TF, Aji IML, Syaputra M, Webliana K, et al. Effect of activation temperature and H3PO4 concentration on activated carbon from asian palmyra palm fronds (Borassus flabellifer Linn). Jurnal Multidisiplin Madani (MUDIMA). 2024 June; 4(6): 720-728.

Qiu X, Wang L, Zhu H, Guan Y, Zhang Q. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale. 2017 May; 9(22): 7408-7418. https://doi.org/10.1039/C7NR02628E

Yu Q, Li M, Ning P, Yi H, Tang X. Preparation and phosphine adsorption of activated carbon prepared from walnut shells by KOH chemical activation. Sep Sci Technol. 2014 Sep; 49(15): 2366-2375.http://dx.doi.org/10.1080/01496395.2014.917326

Raymundo-Pinero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon. 2005 Dec; 43(4): 786-795. http://dx.doi.org/10.1016/j.carbon.2004.11.005

Bhat VS, Krishnan SG, Jayeoye TJ, Rujiralai T, Sirimahachai U, Viswanatha R, et al. Self-activated green carbon nanoparticles for symmetric solid-state supercapacitors. J Mater Sci. 2021 May; 56: 13271-13290.https://doi.org/10.1007/s10853-021-06154-z

Farma R. Physical properties analysis of activated carbon from oil palm empty fruit bunch fiber on methylene blue adsorption. Journal of Technomaterial Physics (JoTP). 2019 Feb; 1(1): 67-73. https://doi.org/10.32734/jotp.v1i1.824

Prayogatama A, Nuryoto N, Kurniawan, T. Modifikasi Karbon Aktif dengan Aktivasi Kimia dan Fisika Menjadi Elektroda Superkapasitor. J Sains Teknologi. 2022 Feb; 11(1): 47-58.https://doi.org/10.23887/jstundiksha.v11i1.42849

Lu SG, Bai SQ, Zhu L, Shan HD. Removal mechanism of phosphate from aqueous solution by fly ash. J Hazard Mater. 2009 April; 161(1): 95-101. http://dx.doi.org/10.1016/j.jhazmat.2008.02.123

Saputra A, Rina O, Hidayat R, Fitria M, Akhni SA, Purnomo A, et al. Synthesis of bamboo-based activated carbon through physicochemical activation for coal-runoff wastewater treatment. IJCA. 2023 Sep; 6(2): 143-150. https://doi.org/10.20885/ijca.vol6.iss2.art6

Azmi NZM, Buthiyappan A, Raman AAA, Patah MFA, Sufian S. Recent advances in biomass based activated carbon for carbon dioxide capture–A review. J Ind Eng Chem. 2022 Dec; 116: 1-20. https://doi.org/10.1016/j.jiec.2022.08.021

Merin P, Jimmy Joy P, Muralidharan MN, Veena Gopalan E, Seema A. Biomass‐derived activated carbon for high‐performance supercapacitor electrode applications. Chem Eng Technol. 2021 Jan; 44(5): 844-851. http://dx.doi.org/10.1002/ceat.202000450

Zhang S, Song B, Cao C, Zhang H, Liu Q, Li K, et al. Structural evolution of high-rank coals during coalification and graphitization: X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and reactive force field molecular dynamics simulation study. Energ Fuel. 2021 Jan; 35(3): 2087-2097. https://doi.org/10.1021/acs.energyfuels.0c03649

Kunusa WR, Iyabu H, Abdullah R. FTIR, SEM and XRD analysis of activated carbon from sago wastes using acid modification. J Phys: Conf Ser. 2021 July; 1968(1): 012014. http://dx.doi.org/10.1088/1742-6596/1968/1/012014

Rampe MJ, Santoso IRS, Rampe HL, Tiwow VA, Rorano TEA. Study of pore length and chemical composition of charcoal that results from the pyrolysis of coconut shell in Bolaang Mongondow, Sulawesi, Indonesia. Karbala Int J Mod Sci. 2022 Feb; 8(1): 96-104. https://doi.org/10.33640/2405-609X.3208

Joni R, Syukri, Hermansyah A. Study of activated carbon characteristic from ketaping fruit shell (Terminalia Catappa) as supercapasitors electrode. JAcPS. 2021 Jan; 10(1): 1-6. https://doi.org/10.24815/jacps.v10i1.17755

Bougheriou F, Ghoualem H. Synthesis and characterization of activated carbons from walnut shells to remove diclofenac. Iran J Chem Eng. 2023 Sep; 42(9): 2812-2832. https://doi.org/10.30492/ijcce.2023.559588.5499

Dungani R, Munawar SS, Karliati T, Malik J, Aditiawati P, Sulistyono. Study of characterization of activated carbon from coconut shells on various particle scales as filler agent in composite materials. J Korean Wood Sci Technol. 2022 June; 50(4): 256-271. https://doi.org/10.5658/WOOD.2022.50.4.256

Mahdi SM, Faisal ML, Al-Sharify ZT, Onyeaka H. Walnut shells as sustainable adsorbent for the removal of medical waste from wastewater. J Eng Sustain Dev. 2023 Nov; 27(6): 698-712.https://doi.org/10.31272/jeasd.27.6.3

Wu Z, Sun Z, Liu P, Li Q, Yanga R, Yanga X. Competitive adsorption of naphthalene and phenanthrene on walnut shell based activated carbon and the verification via theoretical calculation. R Soc Chem Adv. 2020 March; 10: 10703-10714.https://doi.org/10.1039/C9RA09447D

Oba OA, Aydinlik NP. Preparation of mesoporous activatedcarbon from novel african walnut shells (AWS) for deltamethrin removal: Kinetics and equilibrium studies. Appl Water Sci. 2022 May; 12(149): 1-20. https://doi.org/10.1007/s13201-022-01672-w

Kim JJ, Ling FT, Plattenberger DA., Clarens AF, Lanzirotti A, Newville M, et al. SMART mineral mapping: Synchrotron-based machine learning approach for 2D characterization with coupled micro XRF-XRD. Comput Geosci. 2021 Nov; 156: 104898. https://doi.org/10.1016/j.cageo.2021.104898

Jery AE, Khedher KM, Salman HM, Al-Ansari N, Sammen SS, Scholz M. Thermodynamic and structural investigation of oily wastewater treatment using peach kernel and walnut shell based activated carbon. Plos One. 2024 May; 19(5): e0297024. https://doi.org/10.1371/journal.pone.0297024

Yan L, Liu Y, Hou J. High-efficiency oxygen reduction reaction revived from walnut shell. Molecules. 2023 Feb; 28(5): 2072. https://doi.org/10.3390/molecules28052072

Gan YX. Activated carbon from biomass sustainable sources. Carbon. 2021 April; 7(39): 1-33. https://doi.org/10.3390/c7020039

Duan XH, Srinivasakannan C, Yang KB, Peng JH, Zhang LB. Effects of heating method and activating agent on the porous structure of activated carbons from coconut shells. Waste Biomass Valori. 2012 June; 3: 131-139. http://dx.doi.org/10.1007/s12649-011-9097-z

Yağmur HK, Kaya İ. Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J Mol Struct. 2021 May; 1232: 130071. https://doi.org/10.1016/j.molstruc.2021.130071

Yadav R, Macherla N, Singh K, Kumari K. Synthesis and electrochemical characterization of activated porous carbon derived from walnut shells as an electrode material for symmetric supercapacitor application. Eng Proc. 2024 Jan; 59(1): 175. https://doi.org/10.3390/engproc2023059175

Georgin J, Pinto D, Franco DS, Schadeck Netto M, Lazarotto JS, Allasia DG, et al. Improved adsorption of the toxic herbicide diuron using activated carbon obtained from residual cassava biomass (Manihot esculenta). Molecules. 2022 Nov; 27(21): 7574. https://doi.org/10.3390/molecules27217574

Inbaraj BS, Sridhar K, Chen BH. Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. J Hazard Mater. 2021 Aug; 415: 125701.https://doi.org/10.1016/j.jhazmat.2021.125701

Zhan Y, Zhou H, Guo F, Tian B, Du S, Dong Y, et al. Preparation of highly porous activated carbons from peanut shell as low-cost electrode materials for supercapacitors. J Energy Storage. 2021 Feb; 34: 102180.https://doi.org/10.1016/j.est.2020.102180

Uzosike AO, Ofudje EA, Akiode OK, Ikenna CV, Adeogun AI, Akinyele JO, et al. Magnetic supported activated carbon obtained from walnut shells for bisphenol‑a uptake from aqueous solution. Appl Water Sci. 2022 July; 12(201): 1-16. https://doi.org/10.1007/s13201-022-01724-1

Riyanto CA, Ampri MS, Martono Y. Synthesis and Characterization of Nano Activated Carbon from Annatto Peels (Bixa orellana L.) Viewed from Temperature Activation and Impregnation Ratio of H3PO4. Eksata: Journal of Sciences and Data Analysis . 2020 Feb; 1(1): 44-50. https://doi.org/10.20885/EKSAKTA.vol1.iss1.art7

Shrestha LK, Adhikari L, Shrestha RG, Adhikari MP, Adhikari R, Hill JP, et al. Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C1/C2 alcohol discrimination. Sci Technol Adv Mat. 2016 Sep; 17(1): 483-492. https://doi.org/10.1080/14686996.2016.1219971

Iwanow M, Gärtner T, Sieber V, König B. Activated carbon as catalyst support: precursors, preparation, modification and characterization. Beilstein J Org Chem. 2020 June; 16: 1188-1202.

Suryadirja A, Muliasari H, Ananto AD, Andayani Y. Analysis of Iron (Fe) Levels in Drilling Well Water in Praya Tengah District Using Atomic Absorption Spectrophotometry. J Kireka. 2021 Dec; 2(1): 146-153.https://doi.org/10.31001/jkireka.v2i1.21

Hupian M, Galamboš M, Viglašová E, Rosskopfová O, Kusumkar VV. Activated carbon treated with different chemical agents for pertechnetate adsorption. J Radioanal Nucl Chem. 2024 Feb; 333: 1815-1829.https://doi.org/10.1007/s10967-024-09399-5

Kristianingrum S, Sulistyani, Larastuti AR. The effectiveness of active carbon adsorbent of cassava peel (Manihot esculenta cranzts) in reduce level of chromium metal in tannery liquid waste. Indo J Chem Env. 2022 Dec; 5(2): 58-67.http://dx.doi.org/10.21831/ijoce.v5i2.18813

Santos JSD, Umpire PP, Dueñas RA, Merma WV, Andia JM. Preliminary studies of arsenic adsorption using activated carbons synthetized from Kagneckia lanceolata and Passiflora ligularis. Int J Environ Sci Dev. 2024 Feb; 15(1): 44-50. https://doi.org/10.18178/ijesd.2024.15.1.1466

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
تشخيص الكربون المنشط بكلوريد البوتاسيوم المشتق من قشور الجوز في جزيرة تيدور، إندونيسيا. Baghdad Sci.J [انترنت]. [وثق 23 ديسمبر، 2024];22(7). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10684