Algebraic Coincidence Periods Of Self – Maps Of A Rational Exterior Space Of Rank 2
محتوى المقالة الرئيسي
الملخص
Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .
تفاصيل المقالة
كيفية الاقتباس
1.
Algebraic Coincidence Periods Of Self – Maps Of A Rational Exterior Space Of Rank 2. Baghdad Sci.J [انترنت]. 6 يونيو، 2010 [وثق 23 فبراير، 2025];7(2):1034-41. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1070
القسم
article
كيفية الاقتباس
1.
Algebraic Coincidence Periods Of Self – Maps Of A Rational Exterior Space Of Rank 2. Baghdad Sci.J [انترنت]. 6 يونيو، 2010 [وثق 23 فبراير، 2025];7(2):1034-41. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1070