دراسة الخصائص البنيوية والكهربائية والتحسسية لمساحيق سيراميكية نانوية من ZnFe2O4 المصنعة بطريقة تفاعل الحالة الصلبة
DOI:
https://doi.org/10.21123/bsj.2024.11346الكلمات المفتاحية:
حجم الحبيبات الوسطي، حساس غازي، أزمنة الاستجابة والاستعادة، الحساسية، فرايت الزنكالملخص
ظهرت المواد النانوية القائمة على فريت المعادن كمواد واعدة في تصنيع الحساسات الغازية بسبب مساحتها السطحية العالية التي توفر عدداً كبيراً من مواقع الادمصاص لجزيئات الغاز. في هذا البحث، تم تحضير حساس غازي نانوي قائم على فرايت الزنك باستخدام طريقة تفاعل الحالة الصلبة بهدف تحقيق حساسية عالية وزمن استجابة سريع. تم تلدين مساحيق فرايت الزنك المحضر عند درجات حرارة مختلفة ضمن المجال الحراري (500-700)°Cلمدة ست ساعات وتبين أن درجة الاصطناع المثلى للمركب 675°C. تم دراسة الخصائص البنيوية للمركب المحضر باستخدام تقنية انعراج الأشعة السينية. أظهرت النتائج أن المركب يتبلور وفق بنية بلورية مكعبية وينتمي للمجموعة الفراغية Fd3m. كانت قيمة ثابت الشبكة البلورية لفرايت الزنك a = 8.3856 Å . تم حساب الكثافة النظرية للمركب ZnFe2O4. تم حساب حجم الحبيبات للمركب ZnFe2O4 باستخدام صيغة شرر. كان متوسط حجم الحبيبات 29.5nm. تم دراسة تغيرات المقاومة الكهربائية لمركب فرايت الزنك ZnFe2O4 كتابع لدرجة الحرارة. تناقصت قيم المقاومة الكهربائية مع زيادة درجة الحرارة مما يشير إلى سلوك نصف ناقل للعينة المحضرة. درست الخصائص التحسسية للحساس القائم على ZnFe2O4. أظهرت النتائج التحسسية أن الحساس القائم على فرايت الزنك هو حساس جيد لبخار الإيثانول بزمن استجابة واسترجاع 10.115s و81.351s على الترتيب عند درجة حرار تشغيل 275 °C من أجل تركيز قدره 100 ppm. وجد أن زمن الاستجابة والاسترجاع لبخار الأسيتون 10.978s و 102.543sعند درجة حرارة تشغيل 300°C من أجل تركيز 100 ppm من بخار الأسيتون.. بينت النتائج أن الحساس الغازي القائم على الجسيمات النانوية من فرايت الزنك حساسية عالية وزمن استجابة سريع لبخار الإيثانول عند درجة حرارة تشغيل منخفضة نسبيا وهي275°C . تقترح هذه النتائج التي تم التوصل إليها إلى العمل المستقبلي على البنية النانوية لفرايت الزنك لاستخدامه في تطبيقات الحساسات الغازية الكامنة.
Received 21/04/2024
Revised 09/08/2024
Accepted 11/08/2024
Published Online First 20/10/2024
المراجع
Wu K, Li J, Zhang C. Zinc ferrite based gas sensors: A review. Ceram Int. 2019; 45 (9) : 11143-11157. https://doi.org/10.1016/j.ceramint.2019.03.086
Kumar S, Bharti B, Zha X, Ouyang F, Ren P. Recent Development in Industrial Scale Fabrication of Nanoparticles and Their Applications. In Liquid and Crystal Nanomaterials for Water Pollutants Remediation. CRC Press. 2022 Jul 7; 88-118.
Kapse VD. Preparation of nanocrystalline spinel-type oxide materials for gas sensing applications. Res. J. Chem. Sci. 2015. 5(8): 7-12. https://doi.org/2ISCA-RJCS-2015-093
He H, Li X, Li S, Zhu W, Jiang R, Zhai Z, et al. Utilizing oxygen-rich vacancies in Bi2O2CO3/ZnFe2O4 heterojunction photocatalytic materials for the efficient degradation of tetracycline hydrochloride in water. J Water Process Eng. 2024 Aug 1; (65):105742. https://doi.org/10.1016/j.jwpe.2024.105742
Cao Y, Jia D, Hu P, Wang R. One-step room-temperature solid-phase synthesis of ZnFe2O4 nanomaterials and its excellent gas-sensing property. Ceram Int. 2013; 39(3): 2989-2994. https://doi.org/10.1016/j.ceramint.2012.09.076
Aslam A, Rehman AU, Amin N, Amman M, Akhtar M, Morley NA, et al. To study the structural, electrical, and magnetic properties of M (M= Mg2+, Mn2+, and Cd2+) doped Cu-Ni-Co-La spinel ferrites. Mater Chem Phys 2023 Jan; 15(294): 127034. https://doi.org/10.1016/j.matchemphys.2022.127034
Nemufulwi MI, Swart HC, Mhlongo GH. Advances of Nano-Enabled ZnFe2O4 Based-Gas Sensors for VOC Detection and Their Potential Applications: A Review. Processes (Basel). 2023 Oct 31; 11(11): 3122. https://doi.org/10.3390/pr11113122
Zhang J, Song J M, Niu H L, Mao C J, Zhang S Y, Shen Y H. ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone. Sens Actuators B Chem. 2015; 221: 55-62. http://dx.doi.org/10.1016/j.snb.2015.06.040
Abdulhamid ZM, Dabbawala AA, Delclos T, Straubinger R, Rueping M, Polychronopoulou K, et al. Synthesis, characterization, and preliminary insights of ZnFe2O4 nanoparticles into potential applications, with a focus on gas sensing. Sci Rep. 2023 Nov 11; 13(1): 19705. https://doi.org/10.1038/s41598-023-46960-w
Malaescu I, Sfirloaga P, Marin CN, Bunoiu MO, Vlazan P. Experimental Investigations on the Electrical Conductivity and Complex Dielectric Permittivity of ZnxMn1− xFe2O4 (x= 0 and 0.4) Ferrites in a Low-Frequency Field. Crystals (Basel). 2024 May 4; 14(5): 437. https://doi.org/10.3390/cryst14050437
Muaawia AZ, Mujtaba A, Khan MI, Ali B, Karamat A, Asghar A. Enhanced medicinal applications of Co-doped Zn0. 5Ni0. 5Fe2-xO4 for (X= 0.00 and 0.0250) soft ferrites: A structural analysis. J Appl Math. 2023 Aug 5; 1(2): 237. https://doi.org/10.59400/jam.v1i2.237
Gabal M A, Katowah D F, Hussein M A, Al-Juaid A A, Awad A, Abdel-Daiem A M, et al. Structural and Magnetoelectrical Properties of MFe2O4 (M= Co, Ni, Cu, Mg, and Zn) Ferrospinels Synthesized via an Egg-White Biotemplate. ACS omega. 2021; 6(34): 22180-22187. https://doi.org/10.1021/acsomega.1c02858
Dippong T, Levei E A, Cadar O. Recent advances in synthesis and applications of MFe2O4 (M= Co, Cu, Mn, Ni, Zn) nanoparticles. Nanomater. 2021; 11(6): 1560. https://doi.org/10.3390/nano11061560
Tabesh F, Mallakpour S, Hussain CM. Recent advances in magnetic semiconductor ZnFe2O4 nanoceramics: History, properties, synthesis, characterization, and applications. J Solid State Chem. 2023; (322): 123940. https://doi.org/10.1016/j.jssc.2023.123940
Prajapat P, Dhaka S, Mund H S. Investigation of the influence of annealing temperature on the structural and magnetic properties of MgFe2O4. J Electron. Mater. 2021; 50(8): 4671-4677. https://doi.org/10.1007/s11664-021-09022-3
Andhare D D, Jadhav S A, Khedkar M V, Somvanshi S B, More S D, Jadhav K M. Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique. J Phys Conf Ser. 2020; 1644(1): 012014. http://dx.doi.org/10.1088/1742-6596/1644/1/012014
Abd-Elkader O, Al-Enizi AM, Shaikh SF, Ubaidullah M, Abdelkader MO, Mostafa NY. The Structure, Magnetic, and Gas Sensing Characteristics of W-Substituted Co-Ferrite Nanoparticles. Crystals (Basel). 2022 Mar 14; 12(3): 393. https://doi.org/10.3390/cryst12030393
Manoharan C, Bououdina M, Venkateshwarlu M, Murugan A. Enhanced magnetic, electrochemical and gas sensing properties of cobalt substituted nickel ferrite nanoparticles prepared by hydrothermal route. J Phys Chem Solids.2023. 178; 111364. https://doi.org/10.1016/j.jpcs.2023.111364
Bhagat B, Gupta S K, Mandal D, Badyopadhyay R, Mukherjee K. Autocombustion Route Derived Zinc Ferrite Nanoparticles as Chemiresistive Sensor for Detection of Alcohol Vapors. ChemPhysChem. 2024; e202300730. https://doi.org/10.1002/cphc.202300730
Xavier S, Jose D, George S, Alekha KV. Structural and magnetic characterization of transition metal substituted ferrite nanoparticles. AIP Conf. Proc. 2020 Sep 7; 2263(1). https://doi.org/10.1063/5.0017047
Haija MA, Chamakh M, Othman I, Banat F, Ayesh AI. Fabrication of H 2 S gas sensors using Zn x Cu 1-x Fe 2 O 4 nanoparticles. Appl Phys A Mater Sci Process. 2020 Jul; 126: 1-9. https://doi.org/10.1007/s00339-020-03661-9
Husain S, Yusup M, Haryanti NH, Saukani M, Arjo S, Riyanto A. Characteristics of zinc ferrite nanoparticles (ZnFe 2O4) from natural iron ore. IOP Conf Ser Earth Environ Sci. 2021 Apr 1; 758(1): 012001. https://doi. 10.1088/1755-1315/758/1/012001
Wen Z, Ren H, Li D, Lu X, Joo S W, Huang J. Ahighly efficient acetone gas sensor based on 2D porous ZnFe2O4 nanosheets. Sens Actuators B Chem. 2023; 379: 133287. https://doi.org/10.1016/j.snb.2023.133287
Wu K, Lu Y, Liu Y, Liu Y, Shen M, Debliquy M, et al. Synthesis and acetone sensing properties of copper (Cu2+) substituted zinc ferrite hollow micro-nanospheres. Ceram Int. 2020; 46(18): 28835-28843. https://doi.org/10.1016/j.ceramint.2020.08.049
De Oliveira R C, Ribeiro R P, Cruvinel G H, Amoresi R C, Carvalho M H, De Oliveira A J A, et al Role of surfaces in the magnetic and ozone gas-sensing properties of ZnFe2O4 nanoparticles: theoretical and experimental insights. ACS Appl. Mater. Interfaces. 2021; 13(3): 4605-4617. https://dx.doi.org/10.1021/acsami.0c15681
Tahir W, Zeeshan T, Waseem S, Ali MD, Kayani Z, Aftab ZE, et al. Impact of silver substitution on the structural, magnetic, optical, and antibacterial properties of cobalt ferrite. Sci Rep. 2023 Sep 21; 13(1): 15730. https://doi.org/10.1038/s41598-023-41729-7
Sun B, Zhang X, Zhou G, Zhang C, Li P, Xia Y, et al. affect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices. J Alloys Compd. 2017; 694: 464-470. http://dx.doi.org/10.1016/j.jallcom.2016.10.008
Guo W, Huang L, Zhao B, Gao X, Fan Z, Liu X, et al. Synthesis of the ZnFe2O4/ZnSnO3 nanocomposite and enhanced gas sensing performance to acetone. Sens Actuators B Chem. 2021; 346: 130524. https://doi.org/10.1016/j.snb.2021.130524
Cao Y, Qin H, Niu X, Jia D. Simple solid-state chemical synthesis and gas-sensing properties of spinel ferrite materials with different morphologies. Ceram Int. 2016; 42(9): 10697-10703. http://dx.doi.org/10.1016/j.ceramint.2016.03.184
Maharajan M, Mursalin M D, Narjinary M, Rana P, Sen S, et al. Synthesis, characterization and vapour sensing properties of nanosized ZnFe2O4. Trans Ind Ceram Soc. 2014; 73(2): 102-104. http://dx.doi.org/10.1080/0371750X.2014.922421
Chen N. S, Yang X. J, Liu E. S, Huang J. L. Reducing gas-sensing properties of ferrite compounds MFe2O4 (M= Cu, Zn, Cd and Mg). Sens Actuators B Chem. 2000; 66(1-3): 178-180. https://doi.org/10.1016/S0925-4005(00)00368-3
Al-Enizi AM, Abd-Elkader OH, Shaikh SF, Ubaidullah M, Abdelkader MO, Mostafa NY. Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications. Coatings. 2022 Sep 17; 12(9): 1355. https://doi.org/10.3390/coatings12091355
Nemufulwi MI, Swart HC, Mdlalose WB, Mhlongo GH. Size-tunable ferromagnetic ZnFe2O4 nanoparticles and their ethanol detection capabilities. Appl Surf Sci. 2020 Apr 1; 508: 144863. https://doi.org/10.1016/j.apsusc.2019.144863
Njoroge M A, Kirimi N M, Kuria K P. Spinel ferrites gas sensors: a review of sensing parameters, mechanism and the effects of ion substitution. Crit Rev Solid State Mater Sci. 2022; 47(6): 807-836. https://doi.org/10.1080/10408436.2021.1935213
Muhammed SA, Abbas NK. Synthesis and investigation of structural and optical properties of CdO: Ag nanoparticles of various concentrations. Baghdad Sci J. 2023, 20(5 Suppl.): 2002-2011. https://dx.doi.org/10.21123/bsj.2023.7292
Sathiyamurthy K, Rajeevgandhi C, Bharanidharan S, Sugumar P, Subashchandrabose, S. Electrochemical and magnetic properties of zinc ferrite nanoparticles through chemical co-precipitation method. Chem Data Coll. 2020; 28: 100477. https://doi.org/10.1016/j.cdc.2020.100477
Saadon AK, Shaban AH, Jasim KA. Effects of the ferrits addition on the properties of Polyethylene terephthalate. Baghdad Sci J. 2022; 19(1): 208-216. http://dx.doi.org/10.21123/bsj.2022.19.1.0208
Andhare DD, Jadhav SA, Khedkar MV, Somvanshi SB, More SD, Jadhav KM. Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique. J Phys Conf Ser. 2020 Oct 1; 1644(1): 012014. https://doi:10.1088/1742-6596/1644/1/012014
Langford JI, Wilson AJ. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978 Apr 1; 11(2): 102-13. https://doi.org/10.1107/S0021889878012844
Scherrer P. Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gottingen. 1918; 2: 8-100.
Nitika, Rana A, Kumar V. Investigation on anneal-tuned properties of ZnFe2O4 nanoparticles for use in humidity sensors. Appl Phys A Mater Sci Process. 2021 Aug; 127(8): 609. https://doi.org/10.1007/s00339-021-04755-8
Yousef R, Nassif A, Al-Zoubi A, Saad Al-Din N. Synthesis and Characterisation of Structural and Electrical Properties of CuMn2O4 Spinel Compound. Sci J King Faisal Univ. 2022; 22(2): 47-50. https://doi.org/10.37575/b/sci/210028
Kolhar P, Sannakki B, Verma M, SV P, Alshehri M, Shah NA. Synthesis, Characterization and Investigation of Optical and Electrical Properties of Polyaniline/Nickel Ferrite Composites. Nanomaterials (Basel). 2023 Jul 31; 13(15): 2223. https://doi.org/10.3390/nano13152223
Dong C, Liu X, Xiao X, Du S, Wang Y. Monodisperse ZnFe2O4 nanospheres synthesized by a nonaqueous route for a highly slective low-ppm-level toluene gas sensor. Sens Actuators B Chem. 2017 Feb 1; 239: 12316. https://doi.org/10.1016/j.snb.2016.09.122
ZHOU Xin, Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sens Actuators B Chem. 2015; 206: 577-583. http://dx.doi.org/doi:10.1016/j.snb.2014.09.080
Nemufulwi M I, Swart H C, Mhlongo G H. Evaluation of the effects of Au addition into ZnFe2O4 nanostructures on acetone detection capabilities. Mater Res Bull. 2021; 142: 111395. https://doi.org/10.1016/j.materresbull.2021.111395
Hamdan SA, Ali IM. Enhancement of Hydrothermally Co3O4 Thin Films as H2S Gas Sensor by Loading Yttrium Element. Baghdad Sci J. 2019 Jan 2; 16(1): 221-9. http://dx.doi.org/10.21123/bsj.2019.16.1(Suppl.).0221
Wu K, Luo Y, Li Y, Zhang C. Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein J Nanotechnol. 2019; 10(1): 2516-2526. https://doi.org/10.3762/bjnano.10.242
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Enass Ahmad, Rasha Yousef, Abla Alzoubi , Nasser Saad Al-Din
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.