اكتشاف عقيدات الرئة باستخدام صور الأشعة المقطعية الطبية المعتمدة على تقنيات التعلم العميق
DOI:
https://doi.org/10.21123/bsj.2024.11416الكلمات المفتاحية:
الشبكة العصبية التكرارية التحويلية, صورCT, التعلم العميق, سرطان الرئة, العقيدات الرئويةالملخص
يعد اكتشاف سرطان عقيدات الرئة تحديًا طبيًا بالغ الأهمية ومعقدًا. يمكن أن يؤدي الدقة في اكتشاف عقيدات الرئة إلى تحسين تشخيص المريض ورعايته بشكل كبير. يتمثل التحدي الرئيسي في تطوير طريقة كشف يمكنها التمييز بدقة بين العقيدات الحميدة والخبيثة وتعمل بشكل فعال في ظل ظروف التصوير المختلفة. إن تطوير التكنولوجيا والاستثمار في تقنيات التعلم العميق في المجال الطبي يجعل من السهل استخدام التصوير المقطعي بالإصدار البوزيتروني (PET) والتصوير المقطعي المحوسب (CT). وبالتالي، تقدم هذه الورقة الكشف عن سرطان الرئة عن طريق تصفية صورة PET-CT، والحصول على منطقة الرئة ذات الاهتمام (ROI)، والتدريب باستخدام نماذج التعلم العميق للشبكة العصبية التلافيفية (CNN) للدفاع عن موقع العقيدات. تتكون مجموعة البيانات المحدودة من 220 حالة مع 560 عقيدة مع وحدات هاونسفيلد الثابتة (HU) المستخدمة لزيادة سرعة التدريب وحفظ البيانات. تتضمن النماذج المدربة CNN وDCNN و3DCNN وVGG 19 وResNet 18 وInception V1 وInception-ResNet للكشف عن عقيدات الرئة. تُظهر التجربة أن التدريب عالي السرعة باستخدام VGG 19 يتفوق على بقية التعلم العميق، حيث يحقق الدقة والدقة والخصوصية والحساسية ودرجة F1 وIoU ومعدل FP بالتقسيم القياسي؛ 98.65 ± 0.22 و98.80 ± 0.15 و98.70 ± 0.20 و98.55 ± 0.18 و98.60 ± 0.16 و0.94 ± 0.03 و1.05 ± 0.22 على التوالي. علاوة على ذلك، تظهر نتائج التجربة معدل خطأ إجمالي إلى جانب التقسيم القياسي بين ± 0.04 إلى ± 0.54 موزعة على شروط الحساب.
Received 19/04/2024
Revised 23/08/2024
Accepted 25/08/2024
Published Online First 20/12/2024
المراجع
Hosseini SH, Monsefi R, Shadroo S. Deep learning applications for lung cancer diagnosis: a systematic review. Multimed Tools Appl. 2024 Mar 15; 83(5): 14305-14335. https://doi.org/10.1007/s11042-023-16046-w.
Abdulwahhab AH, Mahmood NT, Mohammed AA, Myderrizi I, Al-Jumaili MH. A Review on Medical Image Applications Based on Deep Learning Techniques. J Image Graph. 2024 July; 12(3): 215-227. https://doi.org/10.18178/joig.12.3.215-227.
Gayap HT, Akhloufi MA. Deep machine learning for medical diagnosis, application to lung cancer detection: a review. BioMedInformatics. 2024 Jan; 4(1): 236-284. https://doi.org/10.3390/biomedinformatics4010015.
Thanoon MA, Zulkifley MA, Mohd Zainuri MA, Abdani SR. A review of deep learning techniques for lung cancer screening and diagnosis based on CT images. Diagnostics. 2023 Aug; 13(16): 2617. https://doi.org/10.3390/diagnostics13162617.
Alsheikhy AA, Said Y, Shawly T, Alzahrani AK, Lahza H. A CAD system for lung cancer detection using hybrid deep learning techniques. Diagnostics. 2023 Mar; 13(6): 1174. https://doi.org/10.3390/diagnostics13061174.
Chiu HY, Chao HS, Chen YM. Application of artificial intelligence in lung cancer. Cancers. 2022 Mar 1; 14(6): 1370. https://doi.org/10.3390/cancers14061370.
Gao Q, Yang L, Lu M, Jin R, Ye H, Ma T. The artificial intelligence and machine learning in lung cancer immunotherapy. J Hematol Oncol. 2023 May; 16(1): 55. https://doi.org/10.1186/s13045-023-01456-y.
Davri A, Birbas E, Kanavos T, Ntritsos G, Giannakeas N, Tzallas AT, et al. Deep learning for lung cancer diagnosis, prognosis and prediction using histological and cytological images: a systematic review. Cancers. 2023 Aug; 15(15): 3981. https://doi.org/10.3390/cancers15153981.
Wankhade S, Vigneshwari S. A novel hybrid deep learning method for early detection of lung cancer using neural networks. Healthc Anal. 2023 Nov 1; 3: 100195. https://doi.org/10.1016/j.health.2023.100195.
Rajasekar V, Vaishnnave MP, Premkumar S, Sarveshwaran V, Rangaraaj V. Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques. Results Eng. 2023 Jun 1; 18: 101111. https://doi.org/10.1016/j.rineng.2023.101111.
Deepapriya BS, Kumar P, Nandakumar G, Gnanavel S, Padmanaban R, Anbarasan AK, et al. Performance evaluation of deep learning techniques for lung cancer prediction. Soft Comput. 2023 Jul; 27(13): 9191-9198. https://doi.org/10.1007/s00500-023-08313-7.
Forte GC, Altmayer S, Silva RF, Stefani MT, Libermann LL, Cavion CC, et al. Deep learning algorithms for diagnosis of lung cancer: a systematic review and meta-analysis. Cancers. 2022 Aug; 14(16): 3856. https://doi.org/10.3390/cancers14163856.
Zhang P, Xu X, Wang H, Feng Y, Feng H, Zhang J, et al. Computer-aided lung cancer diagnosis approaches based on deep learning. J Comput Aided Des Comput Graph. 2018 Jan; 30(1): 90-99. https://doi.org/10.3724/SP.J.1089.2018.16919.
Rathod SB, Ragha LL. DLCT LUNG Detect Net: Leveraging Deep Learning for Lung Tumor Detection in CT scans. J Electr Syst. 2024; 20(2s): 1290-1308. https://doi.org/10.52783/jes.1771.
UrRehman Z, Qiang Y, Wang L, Shi Y, Yang Q, Khattak SU, et al. Effective lung nodule detection using deep CNN with dual attention mechanisms. Sci Rep. 2024; 14(1): 3934. https://doi.org/10.1038/s41598-024-51833-x.
Crasta LJ, Neema R, Pais AR. A novel Deep Learning architecture for lung cancer detection and diagnosis from Computed Tomography image analysis. Healthc Anal. 2024 Jun; 5: 100316. https://doi.org/10.1016/j.health.2024.100316.
Gugulothu VK, Balaji S. An early prediction and classification of lung nodule diagnosis on CT images based on hybrid deep learning techniques. Multimed Tools Appl. 2024 May; 83(1): 1041-1061. https://doi.org/10.1007/s11042-023-15802-2.
Li L, Yang J, Por LY, Khan MS, Hamdaoui R, Hussain L, et al. Enhancing lung cancer detection through hybrid features and machine learning hyperparameters optimization techniques. Heliyon. 2024 AFeb; 10(4): e26192. https://doi.org/10.1016/j.heliyon.2024.e26192.
Shah AA, Malik HAM, Muhammad A, Alourani A, Butt ZA. Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Sci Rep. 2023 Feb; 13(1): 2987. https://doi.org/10.1038/s41598-023-29656-z.
Shakeel PM, Burhanuddin MA, Desa MI. Automatic lung cancer detection from CT image using improved deep neural network and ensemble classifier. Neural Comput Appl. 2022 Apr; 1-14. https://doi.org/10.1007/s00521-020-04842-6.
Shafi I, Din S, Khan A, De La Torre Díez I, Palí Casanova RJ, Pifarre KT, et al. An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network. Cancers. 2022 Nov; 14(21): 5457. https://doi.org/10.3390/cancers14215457.
Raut S, Patil S, Shelke G. Lung cancer detection using machine learning approach. Int J Adv Sci Res Eng Trends. 2021 Jan; 6(1): 47-51. https://doi.org/0.51319/2456-0774.2021.0005.
Rehman A, Kashif M, Abunadi I, Ayesha N. Lung cancer detection and classification from chest CT scans using machine learning techniques. 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). 2021 (pp. 101-104). IEEE. https://doi.org/10.1109/CAIDA.2021.10059.
Li P, Wang S, Li T, Lu J, HuangFu Y, Wang D. A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis (Lung-PET-CT-Dx) [Data set]. Cancer Imag Arch. 2020. https://doi.org/10.7937/TCIA.2020.NNC2-0461.
Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019 Jan; 16(1): 67-70. https://doi.org/10.1038/s41592-018-0261-2.
Abdulwahhab AH, Abdulaal AH, Al-Ghrairi AH, Mohammed AA, Valizadeh M. Detection of epileptic seizure using EEG signals analysis based on deep learning techniques. Chaos Solitons Fractals. 2024 Apr 1; 181: 114700. https://doi.org/10.1016/j.chaos.2024.114700.
Du D, Gu J, Chen X, Lv W, Feng Q, Rahmim A, et al. Integration of PET/CT radiomics and semantic features for differentiation between active pulmonary tuberculosis and lung cancer. Mol Imaging Biol. 2021 Apr; 23: 287-98. https://doi.org/10.1007/s11307-020-01550-4.
Ziyad SR, Radha V, Vayyapuri T. Overview of computer aided detection and computer aided diagnosis systems for lung nodule detection in computed tomography. Curr Med Imag. 2020 Jan 1; 16(1): 16-26. https://doi.org/10.2174/1573405615666190206153321.
Adeyanju IA, Bello OO, Adegboye MA. Machine learning methods for sign language recognition: A critical review and analysis. Intell Syst Appl. 2021 Nov 1; 12: 200056. https://doi.org/10.1016/j.iswa.2021.200056.
Mohammed AA, Khamees HT. Categorizing and measurement satellite image processing of fire in the forest Greece using remote sensing. Indones J Electr Eng Comput Sci. 2021 Feb; 21(2): 843-853. http://doi.org/10.11591/ijeecs.v21.i2.pp846-853.
Mohammed AA, Al-Ghrairi AH, Al-zubidi AF, Saeed HM. Unsupervised classification and analysis of Istanbul-Turkey satellite image utilizing remote sensing. AIP Conf Proc. 2023. AIP Publishing. https://doi.org/10.1063/5.0118339.
Al-Ghrairi AH, Mohammed AA, Sameen EZ. Face detection and recognition with 180-degree rotation based on principal component analysis algorithm. IAES Int J Artif Intell. 2022 Jun 1; 11(2): 593. https://doi.org/10.11591/ijai.v11.i2.
Singhal A, Phogat M, Kumar D, Kumar A, Dahiya M, Shrivastava VK. Study of deep learning techniques for medical image analysis: A review. Mater Today Proc. 2022 Jan 1; 56: 209-14. https://doi.org/10.1016/j.matpr.2022.04.081.
Jyoti V, Patel D, Pandya S, Sharma M, Patel J. Deep learning-based transfer learning model for early diagnosis of lung cancer. In 2018 IEEE International Conference on Signal Processing, Computing and Control (ISPCC). 2018 Sep 21 (pp. 232-237). IEEE. https://doi.org/10.1109/SPACES.2018.8316363.
Srinivasu PN, SivaSai JG, Ijaz MF, Bhoi AK, Kim W, Kang JJ. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors. 2021 May 14; 21(8): 2852. https://doi.org/10.3390/s21082852.
Dey N, Ashour AS, Shi F, Fong SJ, Sadiq AS, Sherratt RS. Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Trans Consum Electron. 2017 Jan; 63(4): 442-9. https://doi.org/10.1109/TCE.2017.015011.
Shahin M, Mohsen A, Al-Ghrairi AH, Saeed HM. Surface to image transmission, processing and classification. Indones J Electr Eng Comput Sci. 2020 Apr 1; 18(2): 843-853. https://doi.org/10.11591/ijeecs.v18.i2.pp843-853.
Solovyev R, Wang W, Gabruseva T. Weighted boxes fusion: Ensembling boxes for object detection models. Image Vis Comput. 2021 Oct 1; 107: 104117. https://doi.org/10.1016/j.imavis.2021.104117.
Shadroo S, Monsefi R, Hosseini SH. Epileptic seizure detection using convolutional neural networks based on electroencephalography signals: A comprehensive review. Comput Methods Programs Biomed. 2024 Jan; 222: 106992. https://doi.org/10.1016/j.cmpb.2022.106992.
Mohammed AA, Al-Ghrairi AH, Shadroo S, Hosseini SH. Deep learning-based epileptic seizure detection in EEG signals: a review. Appl Sci. 2024 Jan; 14(1): 301. https://doi.org/10.3390/app14010301.
Hosseini SH, Azari MA, Monsefi R, Shadroo S. Recent Advances in Machine Learning and Its Applications: A Comprehensive Review. J Artif Intell Res. 2023 Sep; 67: 53-91. https://doi.org/10.1613/jair.1.14061.
Nandhini N, Udhayakumar A, Balaji K, Alagarsamy P. Automated skin lesion classification using ensemble of deep learning models. Multimed Tools Appl. 2023 Jun 1; 82(3): 10741-10761. https://doi.org/10.1007/s11042-023-13675-0.
Prasad A, Gupta B. Survey on automated lung nodule detection in computed tomography images using deep learning techniques. Healthc Anal. 2024 Jan 1; 6: 100430. https://doi.org/10.1016/j.health.2023.100430.
Roy S, Menapace W, Oei S, Luijten B, Fini E, Saltori C, et al. Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans Med Imaging. 2020 Aug; 39(8): 2676-2687. https://doi.org/10.1109/TMI.2020.2994459.
Sarker IH. AI-based modeling: Techniques, applications, and research issues towards automation, intelligent, and smart systems. SN Comput Sci. 2022 Feb 21; 3(2): 158. https://doi.org/10.1007/s42979-022-01063-5 .
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Ali Abdulwahhab Mohammed , Ali H. Abdulwahhab , Ibraheem Kasim Ibraheem
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.