سيكريتوم الخلايا الجذعية الوسيطة للسكتة الدماغية الإقفارية: التعبير عن CD31 وعامل نمو بطانة الأوعية الدموية

المؤلفون

  • سيسكا سيلفانا برنامج دكتوراه الفلسفة في الطب، كلية الطب، جامعة سومطرة الشمالية، ميدان، إندونيسيا./ قسم طب الأطفال، كلية الطب، جامعة HKBP نومينسن، ميدان، إندونيسيا. https://orcid.org/0000-0002-1577-3079
  • إسكندر جاباردي برنامج دكتوراه الفلسفة في الطب، كلية الطب، جامعة سومطرة الشمالية، ميدان، إندونيسيا.
  • محمد روسدا برنامج دكتوراه الفلسفة في الطب، كلية الطب، جامعة سومطرة الشمالية، ميدان، إندونيسيا. https://orcid.org/0000-0002-2268-6838
  • ريني سافيتري داولاي برنامج دكتوراه الفلسفة في الطب، كلية الطب، جامعة سومطرة الشمالية، ميدان، إندونيسيا
  • أغونغ بوترا أبحاث الخلايا الجذعية والسرطان (SCCR)، كلية الطب، جامعة إسلام سلطان أغونغ (Unissula)، سمارانغ، إندونيسيا.
  • إيروان مانغوناتمادجا قسم طب الأطفال، كلية الطب، جامعة إندونيسيا، جاكرتا، إندونيسيا.
  • ديوي ماسيثاه دارلان برنامج دكتوراه الفلسفة في الطب، كلية الطب، جامعة سومطرة الشمالية، ميدان، إندونيسيا.
  • سري صوفاني برنامج دكتوراه الفلسفة في الطب، كلية الطب، جامعة سومطرة الشمالية، ميدان، إندونيسيا.
  • يانا أندرياس كلية الطب، جامعة HKBP نومينسن، ميدان، إندونيسيا. https://orcid.org/0009-0006-2677-871X

DOI:

https://doi.org/10.21123/bsj.2024.11813

الكلمات المفتاحية:

CD31، عامل نمو بطانة الأوعية الدموية (VEGF)، السيكريتوم، الخلايا الجذعية الوسيطة، السكتة الدماغية الإقفارية، CD31، عامل نمو بطانة الأوعية الدموية (VEGF)، السيكريتوم، الخلايا الجذعية الوسيطة، السكتة الدماغية الإقفارية

الملخص

في الوقت الحالي، تتمثل العلاجات القياسية للسكتة الدماغية الإقفارية في التحلل الخثري الوريدي وإعادة التوعية الوعائية. في المرحلة الحادة (<4.5 ساعات)، فإن نسبة 3.2٪ إلى 5.2٪ فقط من مرضى السكتة الدماغية الإقفارية مؤهلون لتلقي علاج التحلل الخثري الوريدي. الخلايا الجذعية الوسيطة (MSCs) هي خلايا متعددة القدرات يمكنها التمايز إلى أنواع مختلفة من الخلايا التي تنتج علاجات تجديدية محتملة لمرضى السكتة الدماغية. تُفرز الخلايا الجذعية الوسيطة سيكريتومات تحتوي على عوامل النمو والكيموكينات والسيتوكينات والمستقلبات والدهون النشطة بيولوجياً. يعزز سيكريتوم الخلايا الجذعية الوسيطة زيادة إنتاج CD31 وعامل نمو بطانة الأوعية الدموية (VEGF). يؤدي تأثير تكوين الخلايا العصبية وتكوين الأوعية الدموية من نشاط CD31 وVEGF بواسطة الخلايا الجذعية الوسيطية المشتقة من الحبل السري (SH-MSCs) إلى تجدد خلايا الدماغ وتحسين الوظائف العصبية. تحلل هذه الدراسة تأثير حقن 150 ميكرولتر من SH-MSCs على التعبير عن CD31 وVEGF في فئران Rattus norvegicus المصابة بالسكتة الدماغية الإقفارية بشكل موضوعي. استخدمت الدراسة منهجية تجريبية حقيقية في المختبر مع تصميم اختبار بعدي فقط مع مجموعة تحكم، بينما تم أخذ العينة بأسلوب أخذ العينات غير الاحتمالي مع أخذ العينات المتتالي. تم استخدام 18 فأراً من نوع Rattus norvegicus كعينات، وتم تقسيمها إلى 3 مجموعات: شام، والضبط، وP1 (انسداد الشريان الدماغي الأوسط + 150 ميكرولتر سيكريتوم). تم إحداث حالة السكتة الدماغية في فئران مجموعتي الضبط وP1 باستخدام طريقة انسداد الشريان الدماغي الأوسط عن طريق تثبيت الشريان السباتي المشترك. تم استخدام مقياس الشدة العصبية المعدل (mNSS) لقياس تحسن الوظائف العصبية. من خلال زيادة التعبير عن VEGF وCD31، يمكن للخلايا الجذعية الوسيطية المشتقة من الحبل السري أن تحفز تكاثر الخلايا، وبقاء الخلايا العصبية، وتكوين الأوعية الدموية، والتوعية، وتكوين الخلايا العصبية، واستعادة سلامة الحاجز الدموي الدماغي في أدمغة الفئران، مما يؤدي إلى تحسين النتائج السريرية والوظائف العصبية في الفئران المصابة بالسكتة الدماغية الإقفارية.

المراجع

Khaku AS, Tadi P. Cerebrovascular Disease. StatPearls Publishing. 2024 Jan.

Herpich F, Rincon F. Management of Acute Ischemic Stroke. Crit Care Med. 2020 Nov; 48(11): 1654–1663. https://doi.org/10.1097/CCM.0000000000004597

Yaqubi S, Karimian M. Stem Cell Therapy as a Promising Approach for Ischemic Stroke Treatment. Curr Res Pharmacol Drug Discov. 2024; 100183. https://doi.org/10.1016/j.crphar.2024.100183

Yong KW, Choi JR, Mohammadi M, Mitha AP, Sanati NA, Sen A, et al. Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int. 2018 Oct; 2018: 8179075: 1–11. https://doi.org/10.1155/2018/8179075

Mohammad MH, Al-Shammari AM, Abdulla RH, Ahmed AA, Khaled A. Differentiation of Adipose-Derived Mesenchymal Stem Cells into Neuron-Like Cells induced by using β-mercaptoethanol. Baghdad Sci J. 2020 March; 17(1): 235-243. https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0235

Mohammad MH, Almzaien AK, Al-Joubory AA, Al-Shammari AM, Ahmed AA, Shaker HK, et al. In vitro isolation and expansion of neural stem cells NSCs. Baghdad Sci J. 2023 Nov; 20(3): 787-796. https://dx.doi.org/10.21123/bsj.2022.7280

He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z. Oxidative Stress, Inflammation and Autophagy: Potential Targets of Mesenchymal Stem Cells-Based Therapies in Ischemic Stroke. Front Neurosci. 2021 Feb; 15: 641157. https://doi.org/10.3389/fnins.2021.641157

Ahangar P, Mills SJ, Cowin AJ. Mesenchymal Stem Cell Secretome as an Emerging Cell-Free Alternative for Improving Wound Repair. Int J Mol Sci. 2020 Sep; 21(19): 7038. https://doi.org/10.3390/ijms21197038

Műzes G, Sipos F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-Mediated Inflammatory Diseases. Cells. 2022 Aug; 11(15): 2300. https://doi.org/10.3390/cells11152300

Gwam C, Mohammed N, Ma X. Stem Cell Secretome, Regeneration, and Clinical Translation: A Narrative Review. Ann Transl Med. 2021 Jan; 9(1): 70. https://doi.org/10.21037/atm-20-5030

Rajendra SA, Chen DS, Ferrara N. VEGF in Signalling and Disease: Beyond Discovery and Development. Cell. 2019 Mar; 176(6): 1248-12664. https://doi.org/10.1016/j.cell.2019.01.021

Moon S, Chang MS, Koh SH. Repair Mechanism of Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci. 2021 Jun; 22(16): 8543. https://doi.org/10.3390/ijms22168543

Li Y, Dong Y, Ran Y, Zhang Y, Wu B, Xie J. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res Ther. 2021 Jun; 12(1): 358. https://doi.org/10.1186/s13287-021-02416-4

Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J. 2021; 62(1-2): 238-273. https://doi.org/10.1093/ilar/ilab016

Sari MI, Jusuf NK, Munir D, Putra A, Bisri T, Ilyas S, et al. The Role of Mesenchymal Stem Cell Secretome in the Inflammatory Mediators and the Survival Rate of Rat Model of Sepsis. Biomedicines. 2023 Aug; 11(8): 2325-2339. https://doi.org/10.3390/biomedicines11082325

Albada ME, Sarvaas GJ, Koster J, Houwertjes MC, Berger RMF, Schoemaker RG. Effects of Erythropoietin on Advanced Pulmonary Vascular Remodelling. Eur Respir J. 2008; 31: 126-134. https://doi.org/10.1183/09031936.00035607

Alam JJ, Krakovsky M, Germann U, Levy A. Continuous Administration of a P38α Inhibitor during The Subacute Phase After Transient Ischemia-Induced Stroke in the Rat Promotes Dose-Dependent Functional Recovery Accompanied by Increase in Brain BDNF Protein Level. PLOS ONE. 2020; 15(12): e0233073. https://doi.org/10.1371/journal.pone.0233073

Taei AA, Nasoohi S, hassanzadeh G. Enhancement of Angiogenesis and Neurogenesis by Cerebroventricular Injection of Secretome from Human Embryonic Stem-Cell-Derived Mesenchymal Stem Cells in Ischemic Stroke Model. Biomed Pharmacother. 2021 Aug; 140: 111709. https://doi.org/10.1016/j.biopha.2021.111709

Castro SB, Sousa JA, Bras A, Cecilia C, Rodrigues B, Almendra L. Pathophysiology of Blood-Brain-Barrier Permeability Throughout the Different Stages of Ischemic Stroke snd Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol. 2020 Dec; 11: 594672. https://doi.org/10.3389/fneur.2020.594672

Jingli Y, Jing W, Saeed Y. Ischemic Brain Stroke and Mesenchymal Stem cells: An Overview of Molecular mechanism and therapeutic Potential. Stem Cells Int. 2022 May; 2022: 5930244; 15. Available from: doi: https://doi.org/10.1155/2022/5930244

Shen XY. Activation and Role of Astrocytes in Ischemic Stroke. Front Cell Neurosci. 2020 Nov; 15: 755955. https://doi.org/10.3389/fncel.2021.755955

Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci. 2017 Sep; 18(9): 1852. https://doi.org/10.3390/ijms18091852

Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in Immunoregulation and Therapeutics. Signal Transduct Target Ther. 2023 May; 8(1): 207-242. https://doi.org/10.1038/s41392-023-01452-1

Sazli BI, Lindarto D, Hasan R, Putra A, Pranoto A, Sembiring RJ, et al. Secretome of Hypoxia-Preconditioned Mesenchymal Stem Cells Enhance Angiogenesis in Diabetic Rats with Peripheral Artery Disease. Med Arch. 2023 Apr; 77(2): 90-96. https://doi.org/10.5455%2Fmedarh.2023.77.90-96

Taei AA, Nasoohi S, hassanzade G. Enhancement of Angiogenesis and Neurogenesis by Cerebroventricular Injection of Secretome from Human Embryonic Stem-Cell-Derived Mesenchymal Stem Cells in Ischemic Stroke Model. Biomed Pharmacother. 2021 Aug; 140: 111709. https:/doi.org/10.1016/j.biopha.2021.111709

Yusoff FM, Nakashima A, Kawano KI, Kajikawa M, Kishimoto S, Maruhashi T, et al. Implantation of Hypoxia-Induced Mesenchymal Stem Cell Advances Therapeutic Angiogenesis. Stem Cells Int. 2022 Mar; 2022: 6795274. https://doi.org/10.1155/2022/6795274

Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, et al. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int. 2021 Aug; 2021: 2616807. https://doi.org/10.1155/2021/2616807

Kanazawa M, Takahashi T, Ishikawa M. Angiogenesis in The Ischemic Core: A Potential Treatment Target? J Cereb Blood Flow Metab. 2019 May; 39(5): 753-769. https://doi.org/10.1177/0271678X19834158

Zhu H. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front Cell Neurosci. 2021; 15: 652647. https://doi.org/10.3389/fncel.2021.652647

Whelan S. What is Angiogenesis. Technology Networks Cancer Research. 2022 July.

Gong P, Zhang W, He Y, Wang J, Li S, Chen S, et al. Classification and Characteristics of Mesenchymal Stem Cells and Its Potential Therapeutic Mechanism and Applications Against Ischemic Stroke. Stem Cells Int. 2021 Nov; 2021: 2602871. https://doi.org/10.1155/2021/2602871

Ruan J, Yao Y. Behavioral Test in Rodent models of Stroke. Brain Hemorrhages. 2020 Dec; 1(4): 171-184. https://doi.org/10.1016/j.hest.2020.09.001

Tobin MK, Stephen TKL, Lopez KL. Activated Mesenchymal Stem Cells Induce Recovery Following Stroke Via Regulation of Inflammation and Oligodendrogenesis. J Am Heart Assoc. 2020 Apr; 9(7): e013583. https://doi.org/10.1161/JAHA.119.013583

Ye YC, Chang ZH, Wang P, Wang YW, Liang J, Chen C, et al. Infarct-preconditioning Exosomes of Umbilical Cord Mesenchymal Stem Cells Promoted Vascular Remodeling and Neurological Recovery after Stroke in Rats. Stem Cells Res Ther. 2022 Jul; 13(1): 378-393. https://doi.org/10.1186/s13287-022-03083-9

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
سيكريتوم الخلايا الجذعية الوسيطة للسكتة الدماغية الإقفارية: التعبير عن CD31 وعامل نمو بطانة الأوعية الدموية. Baghdad Sci.J [انترنت]. [وثق 21 نوفمبر، 2024];22(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/11813