تحليل التوصيل الحراري وخشونة السطح وصلابة راتينج الأكريليك المطبوع ثلاثي الأبعاد المقوى بأنابيب الكربون النانوية
DOI:
https://doi.org/10.21123/bsj.2024.11832الكلمات المفتاحية:
الطباعة ثلاثية الأبعاد، أنابيب الكربون النانوية، طب الأسنان الرقمي، قاعدة الأسنان الصناعية، أنابيب الكربون النانوية.الملخص
إن مجال طب الأسنان في تطور مستمر، خاصة مع تكنولوجيا الطباعة ثلاثية الأبعاد. تهدف هذه الدراسة إلى تحليل كيفية تأثير قواعد أطقم الأسنان المصنوعة من مادة الراتنج ثلاثية الأبعاد على التوصيل الحراري، وخشونة السطح، وصلابة السطح عند إضافة أنابيب الكربون النانوية (CNTs) بنسب وزنية مختلفة. تمت إضافة الأنابيب النانوية الكربونية إلى راتينج أكريليك قاعدة طقم الأسنان المطبوع ثلاثي الأبعاد. تم تقسيم العينات إلى ثلاث مجموعات؛ 0.5% و0.7% من الأنابيب النانوية الكربونية بالوزن ومجموعة مراقبة أخرى لا تحتوي على الأنابيب النانوية الكربونية المضافة. خضعت جميع العينات لاختبارات التوصيل الحراري وخشونة السطح وصلابة السطح. تم إجراء تحويلات فورييه للتحليل الطيفي للأشعة تحت الحمراء وتحليلات المجهر الإلكتروني لمسح الانبعاثات الميدانية، وتم تحليل البيانات عن طريق تحليل التباين (ANOVA) أحادي الاتجاه واختبارات المقارنة المتعددة. أدت إضافة الأنابيب النانوية الكربونية إلى راتينج قاعدة طقم الأسنان المطبوع ثلاثي الأبعاد إلى تحسين صلابة السطح والتوصيل الحراري مقارنة بمجموعة التحكم ويرتبط ذلك بتركيز الأنابيب النانوية الكربونية المضافة. ومع ذلك، زادت خشونة السطح مع زيادة الأنابيب النانوية الكربونية المضافة إلى الراتنج. تعمل إضافة الأنابيب النانوية الكربونية إلى راتينج قاعدة طقم الأسنان المطبوع ثلاثي الأبعاد على تحسين السلوك الميكانيكي للمادة، وخاصة التوصيل الحراري وصلابة السطح، ولكن ليس خشونة السطح. لذلك يجب توخي الحذر عند اختيار التركيز المناسب من الأنابيب النانوية الكربونية المراد إضافتها إلى راتينج الطباعة ثلاثية الأبعاد في تحسين خصائص المواد
Received 06/08/2024
Revised 20/10/2024
Accepted 22/10/2024
Published Online First 20/12/2024
المراجع
Zeidan AA, Sherif AF, Baraka Y, Abualsaud R, Abdelrahim RA, Gad MM et al. Evaluation of the Effect of Different Construction Techniques of CAD‐CAM Milled, 3D‐Printed, and Polyamide Denture Base Resins on Flexural Strength: An In Vitro Comparative Study. J Prosthodont. 2003; 32(1): 77–82. https://doi.org/10.1111/jopr.13514
Gökay GD, Durkan R, Oyar P. Evaluation of physical properties of polyamide and methacrylate based denture base resins polymerized by different techniques. Niger. J Clin Pract. 2021; 24(12): 1835–1840. https://doi.org/10.4103/njcp.njcp_469_20
Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res. 2016; 60(2): 72–84. https://doi.org/10.1016/j.jpor.2016.01.003
Tian Y, Chen C, Xu X, Wang J, Hou X, Li K et al. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning. 2021; 9950131. https://doi.org/10.1155/2021/9950131
Unkovskiy A, Schmidt F, Beuer F, Li P, Spintzyk S, Kraemer Fernandez P. Stereolithography vs. direct light processing for rapid manufacturing of complete denture bases: An in vitro accuracy analysis. J Clin Med. 2021; 10(5): 1070-1082. https://doi.org/10.3390/jcm10051070
Al-Rawi KR, Taha SK. The Effect of nano particles of TiO2-Al2O3 on the mechanical properties of epoxy Hybrid nanocomposites. Baghdad Sci J. 2015; 12(3): 597–602. https://doi.org/10.21123/bsj.2015.12.3.597-602
Al-Sammraaie MF, Fatalla AA, Atarchi ZR. Assessment of the correlation between the tensile and diametrical compression strengths of 3D-printed denture base resin reinforced with ZrO2 nanoparticles. J Baghdad Coll Dent. 2024; 36(1): 44–53. https://doi.org/10.26477/jbcd.v36i1.3590
Hoyos-Palacio LM, Castro DP, Ortiz-Trujillo IC, Palacio LE, Upegui BJ, Mora NJ et al. Compounds of carbon nanotubes decorated with silver nanoparticles via in-situ by chemical vapor deposition (CVD). J Mater Res Technol. 2019; 8(6): 5893–5898. https://doi.org/10.1016/j.jmrt.2019.09.062
Abdulhamed AN, Mohammed AM. Evaluation of thermal conductivity of alumina reinforced heat cure acrylic resin and some other properties. J Bagh Coll Dent. 2010; 22(3): 1–6.
Messersmith PB, Obrez A, Lindberg S. New acrylic resin composite with improved thermal diffusivity. J Prosthet Dent. 1998; 79(3): 278–284. https://doi.org/10.1016/S0022-3913(98)70238-0
Kul E, Aladağ LI, Yesildal R. Evaluation of thermal conductivity and flexural strength properties of poly (methyl methacrylate) denture base material reinforced with different fillers. J Prosthet Dent. 2016; 116(5): 803–810. https://doi.org/10.1016/j.prosdent.2016.03.006
Quezada MM, Salgado H, Correia A, Fernandes C, Fonseca P. Investigation of the effect of the same polishing protocol on the surface roughness of denture base acrylic resins. Biomedicines. 2022; 10(8): 1971-1980. https://doi.org/10.3390/biomedicines10081971
Alharbi N, Osman R. Does Build Angle Have an Influence on the Surface Roughness of Anterior 3D-Printed Restorations? An In Vitro Study. Int J Prosthodont. 2021; 34(4): 505–510. https://doi.org/10.11607/ijp.7100
Al‐Dwairi ZN, Al Haj Ebrahim AA, Baba NZ. A comparison of the surface and mechanical properties of 3D printable denture‐base resin material and conventional polymethylmethacrylate (PMMA). J Prosthodont. 2023; 32(1): 40–48. https://doi.org/10.1111/jopr.13491
Abdullah HA, Abdul-Ameer FM. Evaluation of some mechanical properties of a new silicone elastomer for maxillofacial prostheses after addition of intrinsic pigments. Saudi Dent J. 2018; 30(4): 330–336. https://doi.org/10.1016/j.sdentj.2018.05.006
Ameer AK, Mousa MO, and Ali WY. Hardness and wear of polymethyl methacrylate filled with multi-walled carbon nanotubes as denture base materials. J Egypt Soc Tribol. 2017; 14(3): 66–83.
Gad MM, Al‐Harb FAi, Akhtar S, Fouda SM. 3D‐printable denture base resin containing SiO2 nanoparticles: An in vitro analysis of mechanical and surface properties. J Prosthodont. 2022; 31(9): 784–790. https://doi.org/10.1111/jopr.13483
Lin CH, Lin YM, Lai YL, Lee SY Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA. J Prosthet Dent. 2020; 123(2): 349–354. https://doi.org/10.1016/j.prosdent.2019.05.002
Al-Sammraaie MF, Fatalla AA. The Effect of ZrO2 Nanoparticles Addition on Candida Adherence and Tensile Strength of 3D Printed Denture Base Resin. J Nanostructures, 2023; (13)2: 544–552. https://doi.org/10.22052/JNS.2023.02.024
Zheng Q, Kaur S, Dames C, Prasher RS. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. Int J Heat Mass Transf. 2020; 151: 119331. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119331
Kareem YM, Hamad TI, Matheel AR. Evaluating the effect of barium titanate nanofiller addition on the thermal conductivity and physio-mechanical properties of maxillofacial silicone. J Baghdad Coll Dent. 2024; 36(2): 20–33. https://doi.org/10.26477/jbcd.v36i2.3674
Al-Douri ME Sadoon MM. Flexural Strength, Hardness and Surface Roughness of 3D Printed Denture Base Resin Reinforced by Zinc Oxide Nanoparticles. J Res Med Dent Sci. 2023; 11(01): 194–200.
Noori ZS, Al-Khafaji AM, Dabaghi F. Effect of tea tree oil on candida adherence and surface roughness of heat cure acrylic resin. J Baghdad Coll Dent. 2023; 35(4): 46–54. https://doi.org/10.26477/jbcd.v35i4.3513
Altaie SF. Tribological, microhardness and color stability properties of a heat-cured acrylic resin denture base after reinforcement with different types of nanofiller particles. Dent Med Probl. 2023; 60(2): 295–302, https://doi.org/10.17219/dmp/137611
AlFuraiji NH, Altaie SF, Qasim SS. Evaluating the influence of Ti6Al4V alloy particles on mechanical properties of heat-cured PMMA. J Baghdad Coll Dent. 2024; 36(2): 44–53. https://doi.org/10.26477/jbcd.v36i2.3676
Sakaguchi RL, Powers JM. Craig's Restorative Dental Materials-E-Book: Craig's Restorative Dental Materials-E-Book. Elsevier Health Sciences; 2011. 51–96.
Puskas JE, Foreman-Orlowski EA, Lim GT, Porosky SE, Evancho-Chapman MM, Schmidt SP et al. A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials. 2010; 31(9): 2477–2488. https://doi.org/10.1016/j.biomaterials.2009.12.003
Devpura A, Phelan PE, Prasher RS. Percolation theory applied to the analysis of thermal interface materials in flip-chip technology. in ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 00CH37069), IEEE, 2000;1: 21–28. https://doi.org/10.1109/ITHERM.2000.866803
Benedict LX, Louie SG, Cohen LM. Heat capacity of carbon nanotubes. Solid State Commun. 1996; 100(3): 177–180. https://doi.org/10.1016/0038-1098(96)00386-9
Agari Y, Ueda A, Omura Y, Nagai S. Thermal diffusivity and conductivity of PMMA/PC blends. Polymer. 1997; 38(4): 801–807. https://doi.org/10.1016/S0032-3861(96)00577-0
Guthy C, Du F, Brand S, Winey KI, Fischer JE. Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J Heat Transfer. 2007, 129(8): 1096-1099. https://doi.org/10.1115/1.2737484
Han Z, Fina A, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci. 2011; 36(7): 914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004
Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett. 2004; 85(12): 2229–2231. https://doi.org/10.1063/1.1794370
Thomas JA, Iutzi RM, McGaughey AJH. Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys Rev B. 2010; 81(4): 45413. https://doi.org/10.1103/PhysRevB.81.045413
Singh AK, Panda BP, Mohanty S, Nayak SK, Gupta MK. Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT)-epoxy adhesive for thermal conductivity applications. J Mater Sci Mater Electron. 2017; 28: 8908–8920. https://doi.org/10.1007/s10854-017-6621-3
Chang HP, Liu HC, Tan CS. Using supercritical CO2-assisted mixing to prepare graphene/carbon nanotube/epoxy nanocomposites. Polymer. 2015; 75: 125–133. https://doi.org/10.1016/j.polymer.2015.08.023
Jia F, Fagbohun EO, Wang Q, Zhu D, Zhang J, Gong B et al. Improved thermal conductivity of styrene acrylic resin with carbon nanotubes, graphene and boron nitride hybrid fillers. Carbon Resour Convers. 2021; 4: 190–196. https://doi.org/10.1016/j.crcon.2021.05.001
Mazov I, Burmistrov I, Il’inykh I, Stepashkin A, Kuznetsov D, Issi J. Anisotropic thermal conductivity of polypropylene composites filled with carbon fibers and multiwall carbon nanotubes. Polym Compos. 2015; 36(11): 1951–1957. https://doi.org/10.1002/pc.23104
Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al‐Thobity AM, Khan SQ et al. Strength and surface properties of a 3D‐printed denture base polymer. J Prosthodont. 2022; 31(5): 412–418. https://doi.org/10.1111/jopr.13413
Alnamel HA, Mudhaffer M. The effect of Silicon di oxide Nano-Fillers reinforcement on some properties of heat cure polymethyl methacrylate denture base material. J Baghdad Coll Dent. 2014; 26(1): 32–36.
Husaen SI. Mechanical properties of carbon nanotube reinforced Epoxy Resin composites. Baghdad Sci J. 2012; 9(2): 330–334. https://doi.org/10.21123/bsj.2012.9.2.330-334
Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004; 51(8): 801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002
Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly (methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent. 2014; 111(4): 327–334. https://doi.org/10.1016/j.prosdent.2013.06.021
Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine. 2017; 3801–3812. https://doi.org/10.2147/IJN.S130722
Fatalla AA, Tukmachi MS, Jani GH. Assessment of some mechanical properties of PMMA/silica/zirconia nanocomposite as a denture base material. in Institute of Physics. IOP Conf Ser . Mater Sci Eng. 2020;987 12031. https://doi.org/10.1088/1757-899X/987/1/012031
Kim KI, Kim DA, Patel KD, Shin US, Kim HW, Lee JH et al. Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep. 2019; 9(1): 4921. https://doi.org/10.1038/s41598-019-41381-0
Ibrahim RA. The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat-cure acrylic denture base material. J Bagh Coll Dent. 2015; 27(3): 28–32. https://jbcd.uobaghdad.edu.iq/index.php/jbcd/article/view/802
Mhaibes AH, Safi IN, Haider J. Theinfluence of the addition of titanium oxide nanotubes on theproperties of 3D printed denture base materials. J Esthet Restor Dent. 2024; 1‐17. https://doi.org/10.1111/jerd.13299
Kareem YM, Hamad TI. Assessment of the antibacterial effect of Barium Titanate nanoparticles against Staphylococcus epidermidis adhesion after addition to maxillofacial silicone. F1000Research. 2023; 12: 385, https://doi.org/10.12688/f1000research.132727.1
Al-Sammraaie MF, Fatalla AA. The effect of ZrO2 NPs addition on denture adaptation and diametral compressive strength of 3D printed denture base resin. Nanomed Res J. 2023; 8(4): 345–355. https://doi.org/10.22034/NMRJ.2023.04.003
التنزيلات
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 Ranin Raad Khalid, Abdalbseet A Fatalla Fatalla, Matheel AL-Rawas, Yanti Johari, Yew Hin Beh, Johari Yap Abdullah
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.