Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means

محتوى المقالة الرئيسي

Hameed M. Abduljabar
Taghreed A. H. Naji
Amaal J. Hatem

الملخص

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

تفاصيل المقالة

كيفية الاقتباس
1.
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means. Baghdad Sci.J [انترنت]. 12 يونيو، 2011 [وثق 13 مارس، 2025];8(2):602-6. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2553
القسم
article

كيفية الاقتباس

1.
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means. Baghdad Sci.J [انترنت]. 12 يونيو، 2011 [وثق 13 مارس، 2025];8(2):602-6. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2553